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CHAPTER VI

.~ ADAPTIVE CONTROL APPLIED TO A FLEXIBLE VEHICLE

6.1 Introduction-

In man's elforts to conquer space he is using larger and larger
launch vehicles. As vehicles are increased in lenéth, without equivdlent
increcases in structural rigidity, the valmes of their bending mode frequen-
ciegc ape decreaéed. As these frequencies decrease into the range of the
~cntrol frequencies the control problem tecomes more difficult.

This chapter is an introduction to the use cof adaptive control con-
cepts to solve this problem. It surveys the state of the art, including
adaptive techpiques applicable to the control of Model Vehicle No. 2. A
lengthy eannotated bibliography is given in Appendix A.

In the ensuing chapter the mathematical model for a large launch
vehicle such as MV2 is discussed. Asswaptions employed in the derivations
are discussed and some weaknesses in the model are pointed out.

Shortcomings of rigid body control for MV2 are considered and the
conclusion reached that the lower flexible modes (first and second) must
be controlled actively.

Based on the uncertainty of the model and on the wide diversity of
environmental conditions it is further concluded that some form of adaptive
or self-adjusting control system would be desiratle..

The flexible vehicle control problem is related closely to signal

discrimination or state estimation. That is, all sensors on the vehicle
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measure a combination of the rigid body and bending body signals. A
large rortion of the control problem consists of discriminating between
the different components of the measured signals.

The tracking notch filter and the digital adaptive filter are con-
sidered as avenues of -approach to solution of the discrimination problen.
It is concluded that the former is inapplicable for the first and second
bending modes of the vehicle. The latter is extremely complex and appears
undesirable, especially in comparison with the final technique considered.

Model relerence adaptive control appears to be the most versatile of
all schemes considered. Choice of the reference modei and the form of the
controller allows one to include all the a priori knowledge available.
Then the self-adjustment of the paramecters corrects for errcrs in the
systenm c§efficient'values.

Response to disturbances is not a solved problem and this is one pos-
sibility for further work. Conclusions and recommendations are made in
the final section of the chapter. .

©.2 Discussion of the Mathematical Model

Before considéring a controller for the vehicle it is necessary to
investigate the existing mathematical model of the vehicle. It is especi-
ally important tc know the weaknesses in themodel so design adjustments can be
made to reduce their effects. Modcl Vehicle lo. 2 (MV2) has been furnished
L1] for use in control studies. Appendix B includes some portions of
the derivation of the equatiéns given in [1].

Essentially the vehicle equations are derived under the following

assumptions:
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1. The mass, thrust, velocity, ctc., of the vehicle vary slowly
with respect to transients in the control loop, and therefore
are assumed to be quasi-stationary.

2. The vehiclé is flying é gravity turn trajectory and the equations
are the linearized perturbation equations about a nominal tra-
jectory.

The attitude control will maintain the vehicle sufficiently

\}

close to the nominal trajectory that small angle assumptions are

valid. N

I~

For the purposc of describing flexibility, the vehicle is

assumed to be a free-free beam. Bending is then superposed on

the rigid body.

5. Glosh phenomena caﬁ be described by spring-mass systems properly
located along the vehicle.

For the ramainder of this chapter slosh, actuator d&namics, and engine
inertial effects ("tail-wzgs-dog") will be neglected. This is not done
without recalizing that these effects do play a large role in the overall
response of the vehicle. For the present, though, it is assumed that the
vehicle has ideal baffles, actuator dynanics, and a zero-inertia gimbal
systém. Certainly for MV2 these effects play a lesser role than does
bending .

In addition to the errors in the equations contrituted by assumption 1,
the aerodynamic properties of MVZ2 are altered considerably during flight
due to extremec changes in velocity and altitude. 5o the aerodynamic

moment coefficient Qlchanges widely (see Appendix B for curve) and the
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value at any time is questionable. The variations of mass, center of
gravity, thrust, and moment of inertia make it difficult to e#aluate the
control moment coefficient C2, so it too is questionable. Reference [1)
suggests that a + 20% tolerance be considered for Cl and CE' .

Assumption L, though it may appear questionable at first glance, is
rnot entirely without justification. Through experience, reasonabtly good
analytical techniques have becn developed for predicting the bending
Trequencies and normal mode shapes via a beam equation analysis. However,
crrors are present. Superposition of the flexible body on the rigid tody
is vélid cnly for slight bending; i.e., the lateral deflection or bending
must be small enough that the ﬁotion in the direction parallel to the
vehicle axis is negligible.

Appendix B includes a derivation cof the bending moment of MV2. The
expression is valid only for small angles.

To sumnmarize, the vehicle cquations contain coefficients whose values
are indefinite. 1In designing a controller the effects of errors in
assumed values should be minimized. A means of accomplishing this is to

use an adaptive controller.

Z,

¢.? Conventional Control

This section considers some of the conventional techniques for attitude
control of a launch vehicle. Their relation to the control of MV2 is

discussed.

6.3.1 Ripid Body Control

in early approach to the design of an attitude control system

for a launch vehicle was to assune that the vehicle was rigid. For this

ct

ascuartion

5 be valid there must be a surficient separation betweer the



rigid body control frequencies and the first bending mode frequency.
Geissler [2] points out that the amount of separation needed is difficult
to determine exactly, but indicates that factors of %, 5, or even 10 may
be reasonable.

Rigid body control frequency bandwidth is chosen around 0.2 to 0.9 cps.
The first bending frequency of MV2 falls in the range 0.343 to 0.4bk cps
du?ing the flight. At the ou£set ane should note that ignoring the bending
of MV2 is not reasonable. The first (and perhaps the second) bending
should be controlled actively. Nevertheless it is worthwhile to discuss
a few of the rigid body control methods.

First, consider somec of the problems faced by the engineer. The
aerodynamically unstable vehicle is buffeted by winds of an unknown nature.
The vehicle must fly Sn or near its nominal trajectory without breaking |
from -excessive structural loading. A bounded control effort is available
1o reduce lateral drift, attitude angle, and bending moment. These will
often be conflicting interests.

The two most often discussed [2,3,4] rigid body control methods are
the so-called "Drift Minimum Principle,” DMP, and "Load Minimum Principle,"”
LMP. The discussion below will be with respect to the rigid body equations

only, which are’

®R = -Cla - CzﬁR
z = CBQ + C Bp + Cgop (6.1a)
Qo=

-C.z +Q
¢R 72 W
and a linear control law, assuming ideal actuator and sensors, is

= ; 6.
Bg = 2%z * 8198 * b (6.1b)
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“ne bending moment for the rigid body can be expressed as

BMR(x) Kl(x)a + K, (x)B : (6.1¢)

All terms are defined in Appendix B.

Assuning all Ci constant, the transfer function from Vw to z is

o) - -3[52 + alC2S + Cl + (ao + bo)c2j + P(s) (5.2)
P(s)

N
£<|

where the characteristic equation is

c.(C

= 5 r - 2
P(s) = s7 + La102 * *boCu)Js

>
+ [cl + (aO + bo)C +a,C (c clcu)]s _ (6.3)

- - c
+ c7[ao(cac3 clck) 05( L * bocz)]
Assuming the feedback gains have been chosen to yield a stable con-

troller, the final value theoren can be used to examine the steady state

drift rate for a constant wind velocity. It is found to be iss = Vw

(the constant wind velocity). Setting the coefficient of the zero power

of s in the characteristic equation to zero yields the condition

_ CéC - Clch Cl
bo = ——L_—C T ao - T (b.h)
25 2

A stable controller satisfying this relationship yields

c.(cC, - c.cC.) w
5 B 7\eTs T Ly | oy (6.5)
SS - w

(ao + bo)c2 +Cy +aC (c2 5 clch)

Examining Eq. (6.5) it can be seen the zsscan be less than Vw by choosing

(a + b ) ot cl>»'o : (b.@)

Therefore it is defined that the DMP is that control mode in which Eq. (6.4)

is satisfied /////
If b, is larger then the right hand side of Eq. (6.4%) the control ¢



is unstable, so it is a&visable to use slightly less than the equality
for bo to proﬁect against the possibilities of inexact parameter values.

The effect of using the DIMP is that the vehicle turns itself so
that the components of force due to aerodynamic and control inputs cancel,
thus reducing the drift.

As the vehicle passes through mach 1 and the regions of jet winds
and moximum aerodynamic pressure (max Q@ ) a different approach is needed
for the controller.. By examining the bending moment given by Egq. (6.lc)
one can make the following observations. Provided the controller is main-
taining the vehicle approximately on the nominal trajectory the value 'of
@R will be reasonably small and well derped. Even if bO is large enough
to make the system "slowlyunstabe", ¢p will build up slowly at first.
Furthermore c., has by this time become small so we can say that

a :t:(lw (6.7)

Especially in the case of extremely large wind disturbances one can sce
that the bending moment is highly dependent on @ - This gives rise to
the LMP, or angle-of-attack control, in which e = 0. This mode is an
unstable mode except for the smallest of bo values, which would be inad-
equate because small bo implies slow response time. The LMP cannot be
applied over extended periods of time, for 9, 5, and z would increase to
a point at which the above reasQning becomes invalid.

Therefore the DMP tends to reduce the lateral drift rate and the LMP
tends to reduce angle-of-attack and, consequently, the bending moment.
These control modes are not arrived at by optimal control techniques so
the term “minimum" is & misnomer. The recasoning behind the DMP relies

heavily on steady state response to a constant wind. Unless the control



bandwidth is high with respect to the frequency of the changing wind
velocity, much of this reasoning is invalid. The LMP tprng the vehicle
into the wind in order to decrease serodynamic loads, leaving ¢ free to
do as it will.

Several disadvantages are incurred in these control modes. The DMP
requires that Eq. (6.4) be satisfied at all times. This is a preprogrammec
controller which will cause difficulties because of the uncertainty of
the values of the Ci' The LMP leads to instability and is applicable only
for short periods of time. Neither of these have accounted for the flex-
ure of the vehicle.

Provided the bending of the vehicle can be maintained with reasonably
small limits the following approach might be considered. Use the DMP
during the early part of boost. change to LMP during the region of
jet winds and max g, then change back to the DMP afterwards. Excessive
departures from the nominal trajectory during use of the LMP could be
corrected by meneuvers commanded for the guidance loop. This gives
encouragement to the idea of using different performance indices, or &
time variable PI.

Further discussion of the DMP and LMP, alsg referred to as Minimum

Drift Control (MDC) and Minimum Load Control (MLC) is given in Appendix E.

£.%.2 Flexible Body Control

Once the rigid body controller has been decided upon it is
necessary to examine the effects of bending. The early attempts to

~on

- reduce bending fall into the categories of 'gain stabilization" and "phase
stabilization". "Gain stabilization" in essence consists of low pass

filtering all sensed signals to remove the bending signal. For this to
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operate, it is necessary to have separation of control end bending fre-
quencies. Another means of "gain stabilization" is by placing the sensors
in a manner so as to measure only the rigid signal. For‘instance, by
placing the rate gyro et an antinode it senses only the rigid body portion,
provided this is the only bending mode excited. Drawbacks to this are
the movement of the antinode during flight and the presencé of additional
modes.

"Phase stabilization"” consists of feeding back bending signals wit
a phase relatianship leading to incressed damping; specifically, onz may mount
a2 rate gyro aft of the antinode to assure proper phase for the first
bending mode.

For MVZ these general schemes are applicable in various forms, however
o achieve either by proper placement of a sensor is doubtful due to the
uncertainty of parameter values. The next section discusses several approaches

more applicable to MV2.

6.4 Adzaptive Control

The concept of adaptive -control, as usec hefe, is explained below.
Reasons for needing an adaptive controller for MV2 are given. Several
possible techniques from the current literature are discussed in relation
to the control of MVz.

6.4.1 Need and Definition

'‘ne discussion in section 6.2 of the methematical model or vehicle
equations for MV2 came to the conclusion that the form of the equations,
while not exact because of linearization, is a reasonably good assumption.
The model becomes very complex and of high order when several bending modes

are included. The slosh, actuator dynamics, and motor inertia are still



not neglected here; they too add to the complexity. The parameter values
are time varying and any numbers arrived at for them are highly question-
able. ;

During its flight MV2 is buffeted by winds of unpredictable magnitude
and direction. These winds can have large effects on the vehicle: exces-
sive drift off ofvthe nominal trajectory, excitation of bending oscillations
on the vehiéle, and large bending loads which could destroy the vehicle
or ceuse an abortion of the mission.

Therefore the problem is to design a controller which will fly the
vehicle along its nominal trajectory without exceeding allowable bending
moment and control angle requirements and furnished with the following
information (or misinformation).

1. Vehicle dynamics of highly questionable accuracy.

2. Unknown disturvence inputs (winds).

Widely changing environment and plant, which will require a

\N

versatile controller.

A conQentional or fixed controller is designed to perform well within
a range of conditions of environment, inputs, and disturbances. There
is usually a trade off between how well and the size of the range. A
conventional controller usually behaves poorly under conditions other than
those designed for. The conditions associated with MV2 vary over a very
large range.

Consequently the possibility of 2 prescheduled or programmed con-
troller should be considered. In such a controller, the pertinent infor-
mation about the conditions the system faces are measured. Then the cor-

rect controller is chosen from a previously prepared table. The DMP falls
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under this general category. The designer must have a good set of
cquations to work with, and needs to make extensive tests on the system
to insure the proper gain combinations are chosen. Fof IVZ the equation
parameters are questionable and flight tests are infeasible due to the
expense.

The cbvious conclusior is that for MV2, because of its high degree
of flexibility and for other reasons discussed above, an adaptive control
system is desireble.

Gibson [5] defines an adaptive control system as one which compares
its performance to that prescribed by an index of performance and adjusts
itselfl toward thce optimum according to this criterion. In doing so it
performs the three functions of identification, decision, and modification.

In this discussion the classification is broadened somewhat. An
adaptive or self-adjusting control §ystem is one which includes any means
of automastic adjustment which improves the control performance. The
differences and similarities between these definitions can furnish mater-
ial for endless debate.

In general, any adaptive control system depends heavily on the perform-
ance index. Often the control objective can only be stated in vague words.

L is extremely difficult to translate this into a realistic PI. For

MVZ it is required to fly along the nominal trajectory without breaking
up and using only the available control. This is obviously a vague state-
ment and it is difficult to formulate it as a precisg integral or final

value performance index. This is the weakest link in any optimization

problem. Since adaptive control is effectively on-line optimization this
remains a weak link.

' Reducing or eliminating bending is a necessary requirement for the
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MV2 controller. The bending maoment must be maintained within safe limits
and the control effort is bounded. The drift, attitude angle, and their
rates are especially important at the end of the flight, though if one
considers the entire set of vchicle equations rather than the perturbations
about the rominal trajectory it is not entirely obvious that these quan-
tities (especially z and ¢) should be kept small at all times.

At this point no specific index of performence will be offercd.
Instead the discussion will be directed toward possible adaptive techniques
applicable to the problem. Andeen [€,7] discusses five categories of
adaptive techniques for stabilization of large, flexible vehicles. They
are 1) rate-gyro blending, 2) tracking notch filters, 3) multiple sensors,
L) model reference/implicit systems, and 5) rigid body separation. Rate-
£Vro blending, actually a subcategory of multiple sensors, consists of
nmounting two rate-gyros so that one is fore, the other aft of the first
node antinode. The signals are added and the relative gain of the two is
adjusted to either climimate the bending (for gain stabilization) or feed
it back with the proper phase for increasing the damping of the tending
mode (phasé stabilization).

Below other techniques are discussed with relation to their applica-

tion to the control of MV2.

6.4.2 Tracking Notch Filter

A1l sensors mounted on a flexible vehicle, such as MV2, measure
a combination of the rigid body and fiexible body information. This
combination varies along the vehicle as the normalized mode shapes and at
any station it varies with time of flight. It is necessary to obtain

separate signals for the rigid body and flexible body from the measured
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signal if one insists on superposition of bending corrections on a rigid
.

body analysis. One rwust actually scgarate the flexible signal into compc- -
nuie for cach tending mode. Once the engineer has at his disposal the
scparate signals (or equivalently, knowledge of the combination) he may
combine them in such 2 manner as to cfTectively control the vehicle. 1In
ssence the engineer is faced with a difficult problem of signal discrim-
ination or state estimation.

Trhe wroblem nay ve stated ig terms of MVZ for onc bending mode as
rollows. The measured.signal ¢ is a swamation of the two states QR
and ql.

o (t,x) = ¢R(z) - Yl‘(t,.v.) ql(t) (6.8)

where Yl’(t,x) is the slope of the first normalized mode shape 8% time ¢

and station . Predominantly oR is a damped second order sinusoid
( - -at A . . e K
o lt) = e (A sin wpt + B cos wpt) (6.9)

and the tending signal is an undamped second order sinusoid

Y 2 oot .
ql(u) C sin »Blt + D cos uBlt (6.10)
The problem is to obtain ?E and Ny from & It is even more complicated
since there are also higher bending mode signals and measurement noise in
¢.

One approach for separating these signals is frequency discrimination.
For a case where wp /uH is sufficiently high they may be separated by

1
low pass filtering to obtain ¢R' No precise number can be given for

wy /wR tut [2] does mention the possibilities of 3, 5, or even 10 being
1

reasonable. As Wy and wp approach each other low pass filtering becomes
1
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inadequate. The control problem also becomes more difficult. With wide
separation the bending can be neglected provided only oR and other rigid
body signals are fed back.

A sharply tured (narrow rejection band) notch filter can be used to
reject the UBJ signal. For wBl and wp glose together, the rejection band
must bte made ﬁarrow enouch not to interfere with the we signel. For MVZ2
these frequencies are very close and possibly wbl could be less than wp -
al some times. A scheduled tuning of a notch filter is still feasible
provided that a shérp notch is available and accurate a priori knowledge

of w, is available throughout the flight.

"1
Barlier discussions emphasize that although analytical techniques

are quite advanced, an exact tabulation of wBl is not possible. The re-
jection band or notch must be very narrow for the first behding mode of
V2 to reduce interference with the rigid body signel. So a slight error
in the tabulation could result in passing the bending signal virtually
un@isturbed through the filter for the entire flight. No separation
would be obtained in this casec.

A tracking notch filter can be used to eliminate the need for tatulating
uBl. The block diagram of such a unit is depicted in Figurg 6.1. A
transfer function representation is used though it should be recognized
that this is really invalid when W the current estimate of wBl, varies.
The input x is passed through a band pass filter tuned to the current
valuce of wp* This allows the frequency tracking unit to operate on a
signal containing primarily the frequency of interest.

Several frequency tracking units are discussed in the literature [6,8)]

and one example is depicted in Figure 6©.2. The operation of this unit is



as follows. The signal y is assumed to be an undamped sinsoid

y = A sin wp t (6.11)
l .
with second derivative
. 2 . y g .
Y = -ug A sin wy t = -ug y (6.12)
1 1 1 .

The following relationship is obviousiy true

)
n

T W (6.13)
3, | B, Iy ,
~ . I e}
I is desired to adjust b=wE , the estimate of wg ,to minimize e, where
e . 2 . <
e=lyl -dyl = a0 - v (6.18)
l .

3
2

£

fu
[
o

7}

&

ment equation which changes © in the direction cf steep descent

1 de”
-af = -k 3,5—- ) (0-15)

L oxse = Ke (6.16)

+

the artitrary nature of k it is reasonable to lump 2kA into a
new constant X, to be chosen by the designer. The lags are introduced in
Lotk paths to avoid the pure differentiation.

14 is necessary that Wy be separated from the rigid btody frequencies

1

“or such a self-adjusting system to operate. Otherwise the frequency
Lracking wnit might track the wrong signal, lcading to disastrous results.
It i5 concluded that the use of a tracking notch filter to reject the

first bending signal of MV2 is inadvisable, due to insufficient difference

between w,. and w,-.
E R

Y
-“

6H.4.3 Digital Adaptive Filter

At this point the prospects of frequency discrimination between



rigid and flexible body signals appear unpromising. Discrimination based
on frequency and damping has been suggested by Zaborézky et al [3]. The
technique is described briefly below.
In general the rigid body response is'mo;e highly damped than that

o7 the rlexible tedy (Egs. (6.9) and (6.10) indicate typical responses).
Thus it is ossumed that ¢R can b. es-imated at the nth sample time by the
model

- -at

OR(tn) =e D (AN COL'“ﬁtn + By sin thn) (6.17)
For the present only a two parameter fit is discussed. AN and BN are the

th
values estimated at the N sample time. The deviation Cfrom the measured

signal ¢(t) at the nth sample time is

a () = ot ) - o \* ) (6.18)

When °R(t> = ¢R(t), the deviation d(f) is the bending signal. This
technique is used as part of the attitude control loop, and the otjective

of the control is to feedback a signal such that the bending is reduced.

The signal fed back to the controller is °R' During the time interval

% is computed using tN’ AN’ and BN- T is the

AT) =ty < b <ty o, %

N

sampling period. Using the M most recent samples of ¢, AN and BN are chosen

to minimize
M

1(a, B.) =r1w2(t ) d2(t ) (6.19)
. N, bt ZJ i i+N-M

i=1l
where w(ti) is a weighting function.

™e nccessary conditions which must be satisfied are

: = 0 . (6-20)
Sy By
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t
Define the M-vecotrs Uy, UAH’ U W’ and ¢ whose 1 b components are

B
-at
_ i+N-M
UAi = -uley) e cos wpby N-M
~at i
_ i+H-M .
UBi = W(ti) e sin uRti+N-M !
{
Upy, = W(t) Uy \ (6.21)
i i {
163 =w(t.) U
BW; it B
o = oty
Define the scalar products
—y I
AL CA A i
|
T
by = Uy Up Ug U, ? (6.22)
o7
bpp = Up Up J
and finally define the Mevectors
\
- )
. Uni®as ~Ua°EB 3
‘AT 2 t
Ppp®an - Pap |
[ (6.23)
: _ |
~ Uulap - UniPas g
VB - )
PppPaa - Pap ‘

Solving Eq. (6.20) and applying all the terms defined in Egqs. (6.21),

(6.22), and (6.23), it is found that the value for Ay and By should be

T
Ag=Vy ©
(6.24)
T
By = Vy ¢

The system operates on the measured signal only during transient
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periods. Means are included for sensing a transient. Then a fade-in period
occurs during which M increases from 1 to the desired value. During this
time the computer is storing sample points. From the time of the initia-

tion of the new transient, the controller receives the estimated signal

°R for use as feedback. Since the current value of OR(tN) is calculated

N we should consider Egs. (6.24) .

Note that the VA and VB vectors are independent of ¢ and can be precomputed

and stored. Then it is necessary to inscrt the newest measurement ®(tN),

only after the computation of AN and B

shifting out the oldest, and to compute AN and BN' The computation time
enters as a transportation lag. This can be partially eliminated by

cmploying an extrapolatiorn on the A, end B, values.

N N

It is also possible to use a four parameter fit, in which a and wp
are estimeted. The computation per stage is considerably higher.

Scvoeral observaticns can be made concerning this technique. It is
a complex tecchnique requiring: 1l)sensing of the beginning of a transient,
2) estimatien during fade-in, %) extrapolation to reduce the effect of
{for computation, and 4) a2 digital computer with A to D and D tc A
converters. The concept of importance here is the discrimination between
risid body and bending body signals based on damping and frequency alone.
Assuming ;R as given by Eq. (6.17) is-equivalent to assuming a model for
the rigid body signal. Then this model is adjusted to more nearly repre-
scnt the true case.

For MV? the flexible modes are lightly damped. With a controller
placed on the vchicle the damping of the bending modes is increased.
Therefore, here as in‘othcr techninques, the rigid body and flexible body

signals have similar characteristics. Application of this technique to

+he control of MVe would be a difficult problem due to the complexity of



the technique.

Several recent contributions have been made in the area of state
estimation for nonlinear systems. Sridhar et al [10] and Detchmendy [11]
arc ‘wo cxamples. The prospecis of.a sequential estimation scheme are
considered and found promising. At this time a considerable amouht of

digital solution is required in the use of these techniques.

G.L.h Model Reference Adaptive Control, MRAC

The tracking notch filter is a means of separation of rigid and
bending signals by frequency discrimination. The digital adaptive filter
assunes a form or model for the rigid body feedback and adjusis this model
to minimizing the bending. In this respect the digital adaptive filter
is similar to a model reference adéptive controller, MRAC. A review of
the design capabilities of MRAC by Whitaker (127 and papers by Kezer,
Hofmann, and Engel [13], Clark [1k] and others [6, 15] discuss several
applicationsfof MRAC.

For the MRAC the goals or performance criteria of the system are
incorporated into a reference model. This real-time model is driven in
parallel with the controlled system. A feedback controller is specified
except for the parameters to be self-adjusted. The response error is
formed from the diffcrence between the desired output from the model and
the system output. Certain parameters of the system are adjusted in a
closed-loop fashion to minimize the short term average of the squared error.
A block diagram of a general MRAC system is given in Figure 6.3.

The formulation of an index of performance following the line of the
discussion in Section 6.4.1 is not required. Instead a model must be chosen
which characterizes the desired responsé to the command input. Reference [13]

discusses the relationship betwcen the reference model and time and frequency
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domain performance criteria.

The problem of identification of the system is one which need not
be solved exactly for MRAC. The engineer needs and can use all the
a priori knowledge at hand, but it is only necessary to be sure that the
Torm of the seltf'-adjusting controlier is versatile enough to conform the
system output to that of the model. Obviously the more information known
a pricri the better the design will be.

Once the reference model and the form of the controller havé been
chosen the output Yo from the system must be obtaiped. For example, in
Reference [13] the reference model was chosen to be an open circuit between.
command input and first bending mode response, thus

¥q.5 Ny EO (6.25)
Ho direct nmeasure of %l is available so the output unit consists of two
rate-gyros, one fore (XF)’ the other aft (xA) of the first antinode. Then

in terms of MV2 with first bending mode,

+

¢ (:': ) @R - 11 (XA> r)l

A (6.26)
o (xp) = 0p - ¥y (xp) my
1 ']

And Yl (xA) >0, Y

1 (xF) < O which allows us to take the difference te

obilzin
Kn, = (Y

L G) =Y Gpdlng = () -6 (x)  (ea2])

and intepgrating we get

y_ =K ny : (6.28)

o}
The adjustable parameter is the relative gain on the two rate measure-

menss which are summed and used in the control loop. This reduces to a

form of rate-gyrc blending wherein the relative gains of two rate--gyro
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neasurenecnts are adjusted to minimize the short term average of the

squared response error. In this case the error is the negative bending
and the parameter P is adjusted by

S de
P = ke3 (6.29)

Because P has no offect on yd (even it it isn't assumed zero as in this

casa)
3 .
) y _
F T w : (6-50)

and this signal can be cbtained by passing the signal at the input of

the gain P through a filter containing the control system transfer function
(assuming at least a quasistationary system). The system is unknown because
no identification is performed. However, a modcl has been chosen which,

as the control parameter approaches its optimum setting, will be closely
avproximated by the system. Therefore this filter can be approximated

by the model.

Several disadvantages arise in the use of MRAC technigues. The rate

of adjustment of the parameter depends on the error. As the error becémes
“small the parameter changes slowly. Then if a large disturbance or command
input enters the systen f can become very large. The system behavior

was examined assuming P smell, so that transfer functions could be used.

For P too small, the system is sluggish. Reference [lu] includes a

study of this problem and suggests a peak holding technique for its
solution. That is, when a large value of P occurs it is stored on a
capacitor and is discharged slower than the transient of the system signals.
The time constant of the holding circuit is another parameter at the de-
signer's disposal.

Behavior in the face of disturbance inputs has not been sufficiently
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studied. When disturbances enter the system the parameters adjust so

as to nullify their presence, becausc the model is unaffected and Yo must
follow Y3 What is happening to other variables in the system is question-
able. This is a‘drawback to characterizing the response of a complicated
system by only one output. Then (with tﬁe pafameters off their optimum
setting for following command inputs) when the disturbances shift or cease
the system must readjust to again reach its optimum.

In spite of the disadvantages discussed above, model reference adaptive
control is the most promising technique mentioned here. It has the advan-
tagce of being a closed loop system even if the adjustment loops feil.

Also an engineer can bring to bear all his a2 priori knowledge in choice
of the reference model and the form of the controller. The MRAC technigue

is extremely versatile and it is recommended that it be studied further.

6.5 Conclusions and Proposed Extensions

Naturally an exact description of the vehicle to be controlled would
be helpful. However, since an engineer can never expect such a situation
(1v2 is typical in this regard; cy and C, can vary by * 20% at any time in
flight), a control scheme based upon such knowledge is probably impractical.

The rigicd body modes of conirol should only be applied to Ve after
considerable care has been taken to ascertain the effects of bending. It
appears that the first bending mode should be controlled actively, thus
changing the DMP. The LMP is reasonable dufing flight through regions of
high acrodynamic loading.

Inherent in the MV2 control problem is a problem of signal discrimina-
tion. Once the rigid tody and flexible body signals are separated, it is
possible to dcsién a controller which damps out the bending while satisfyiqg

the other syster requirements. Separation by low pass filtering is impractical



for the first bvending mode ‘because qu and wp will most likely be too
close together. A preprogrammed notchLmight reject the first bending
signal with little effect on the rigid body information. This prepro-
gramming would require accurate knowledge of uBl during flight. A
tracking notch filter to reject the uBl signal could run into difficulties
Lecause of the close proximity of wBl to upt

A means of partially circuaventing this signal separation problem
may be to use a complete adaptive control system. Not only is a frequency
tracked, but the controller itself adjusts for optimal performance. The
most versatile are the model reference adaptive control techniques. ZIn
this configuration the system is a closed-loop control system in which
certain parameters adjust themselves automaticelly.

To apply model reference techniques to MV2 it is necessafy to choose
a reference model whose output characterizes the desired response. Systen
behavior is the presence of disturbances is an unsolved problem. For
instance, the controller tends to maintain the response error small, dut

other variables may not be. Some measure of the importance of this effect

should be obtained.
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APPENDIX A
ANNOTATED BIBLIOGRAPHY ON ADAPTIVE CONTROL

During compilation of this list, primary emphasis was placed on
work reported in recent years. Other bibliographies are available for
past years; e.g., Stromer [118 of this list]. Rather than limit the
search, articles are included which do not relate directly to the
Model Vehicle No. 2 control probler.

Entries are arranged by years, most recent first, and alphabetically
within each year. For brevity the following abbreviations have been used.

NEC  Transactions of the National Electronics Conference

JACC Preprints of the Joint Automatic Control Conference

PGAC Transactions of the Professional Group on Automatic Control

of both I.R.E. and I.E.E.E.

JBE Journal of Basic Engineering of the A.S.M.E.

IFAC Trensactions of the International Federation of Automatic

Control Congress.

AXRC Automation and Remote Control

(1] Gul’ko, F. B.; Kogen, B. Ya.; Lerner, A. Ya.; Mikhailov, N. N.;
Novesel’tseva, Zh. A., "A Prediction Method Using High-Speed
Analog Computer end its Applications,” ASRC, Jan. 1965, pp.803-813.

This article deals with & method for the optimel or nearly-
optimal control of a plant by means of predlctlon and with the
design of analog prediction units.

(2] Hamza, M. H., "Synthesis of Extremum-Seeking Control Systems,"
A&RC, Feb., 1965, p. 1038.

A method is outlined for the design of high specd extremal
controllers. The method i1s based on the feeding in of test signals
or periodic alternation of the input signal polarity and measure-
ment of the discontinuities produced in the corresponding derivative
output signal.
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Yeavedcv, G. A., "Synthesis of Asymptotic Optimum Dual-Node
Control Systems,” ASRC, Feb., 1965, p. 1050.

A modification procedure is used to solve the fundamental -
equations of dual mode or bistable control theory leading to a
two-stage search for solution that is amenable to natural
interpretation. One stage of the solution consists of finding
an optimum estimate for the unknown parameters of the controlled
process, called minimum loss estimate. The application of the
method is illustreted by examples.

Terpugov, A. F., "Optimality Criteria for Dual Control Systems,"
AZRC, Feb., 1965, p. 1043.

Dual control systems with incomplete information on the
nusber of performance steps or the object characteristics are
investigated. Simplified versions of the optimality criteria
are proposed which lead to asymptotically optimal systems but
which arc simpler analytically. S '

hoki, }., "“On Performance Losses in Some Adaptive Control Systems,"”
JACC, 19%k4, p. 29.

This paper is concerned with the problem of how long & time
lapse therc should be between +the time data starts being collected
and thne time ectual perameter modifications are macde.

Cox, H., "On the Ectimation of State Variables and Parameters
for Noisy Dynamic Systems," PGAC, Jan., 1964, pp. 5-12.

Using an on-line regl-time digital computer, & probability
{function, and dynamic prograrning a technique is developed to
estimatc the states of a system.

Haas, V. B., "Large Signal Adaptation for Multiple Input Plants,"
PGAC, January, 1964, pp. 39-46.

Concerned with obtaining optimal action by varying morc than
one parameter. Uses & passive controller and a controller which
adapts to changing plant parameters; the adaptive controller
switches relays. Applied to linear plants with constrained inputs.

§i11, J. D. and MaMurtry, G. J., “An Application of Digital
Computers to Linear System Jdentification,” PGAC, Oct. 1964,
pp. 536-538.

Discrete interval binary noise perturbation signal used with
cross correlation to identify the plant impulse response.

Ho, Y. C. and lee, R. C. K., “A Bayesian Approach to Problems in

Stochastic Estimation end Control," PGAC, Oct., 196k, pp. 335-339.

Estimatcs the states of a system where the Kth estimate is
based on all preceding estimates.
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(11]

(13]

(4]

(16]
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Horowitz, I. M., "Linear-Adaptive Flight Control Design for
Re-Entry Vehicles,* PGAC, January 1964, pp. 90-98.

Considers designing a linear controller to compensate for _
atmospheric changes on control effectiveness in X-15 rocket plane.

Horoviti, I. M., "Comparison of Linear Feedback Systems with
Self-Oscillating Adaptive Systems," PGAC, October, 1964, pp. 386-392.

A "design" procedure is developed for an adaptive controller
and appliecd to & plant. The resulting controller is compared
with a linear controller for the same plant.

Jacobs, 0. L. R., "Two Uses of the Term 'Adaptive' in Automatic
Control," PGAC, October 196k, pp. 5T4-5T5.

Draws a distinction between “adaptive" and “model-adaptive.”

Kaufman, H. and DeRusso, P. M., "An Adaptive Predictive Control
System for Random Inputs," PGAC (Short Paper) October, 196k,
pp. 540-5u5.

Utilizes a fast time predictive model to decide which polarity
of a bang-bang control input should drive the plant. The model
adjusts itself to better represent the plant. o

Knowles, J. B., "The Stability of a Proportional Rate Extremum
Regulator,” PGAC, July, 1964, pp. 256-26h.

Considers noise. Mean square error criterion. Computes
optimal gain setting Irom estimates of measurablc mean square
crror.  Stabilify investigated. Experimental results given.
Acsumes parabolic operating characteristic.

Kozlov, O. M., "The Problem of Conditions for Identity of Systems
that arc Optimal with Respect to Different Criterie,” A&RC,
April, 1964, p. 1324.

The author studies conditions under which optimality of a
system relative to one of the criteria in a certain class of
quality criteria for automatic control systems cntails optimality
relative to all other criteria in the class.

Krutova, I. N. and Rutkovskii, V. Yu., "Dynamics of a First-Order
Adaptive system with a Modely .ASRC, August, 1964, p. 175.

The influence of error algorithms, of the number of adjustable
coefficients, and of their law of variation on the performance of
an adaptive system with a model is considered. It is shown that
the introduction of coefficient-variation adaption as a function
only of the mismatch in the coordinates of the model and of the
syster and allows stabilization of the system when the self-
aligning coefficients are negative.
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[17] Krutova, I. N. and Rutkovskii, V. Yu., "Effecte of Integrals in
Laws Governing Variations of Modified Coefficients on the Dynamics
of a Sclf-Adjusting System with'a Model," A&RC, Nov., 1964, p. Lkl

The effect of the integrdls in the laws governing variations
of the moditied coefficicnts in the feedback loop (K.) and the
control-signal circuit (K ) on the process of motion in a self-
ad justing system is consificred.

[187 Kumar, K.S.P. and Sridhar, R., "A Note on Combined Identification
end Control,"” PGAC (Correcspondence), January 1904, p. 11&.

Introduction to Specific Optimal Control coupled with
identification.

{197 Kumar, K.S.P. and Srichar, R., "On the Identification of Control
Systems by the Quasi-Lincarization Method," PGAC, April, 196,
pp. 151-15k.

Uscs quasi-linearization technique to evaluate the coefficients
0¥ the assumed form of the plant differcential equations. '

[20] Kuntserich, V. M., "Investigation of One Class of High-8peecd
Adaptive Control Systems," A&RC, May, 1964, p. 1527.

The author describes a method of continuously varying the
relative damping in both continuous and pulse systems. He obtains
nonlinecar differential and difference equations for adaptive
systems with & method proposed for measuring quality criteria.

Hc gives the results of simulating several types of adaptive systems.

[on
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Kushner, H. J., "On the Optirmum Timing of Obscrvations for Linear
Control Systems with Unknown Initial States,” PGAC, April, 196k,
pr. 144-150.

Shows that optimal timing of observations may be important.
Done for a plant with linear dynamics, quadratic cost function,
and no magnitude constraints.

[22] Leibovic, K. N., "The Principle of Contraction Mapping in Nonlinear
and Adaptive Control Systems,” JACC, 196k, p. 34 (also in PGAC,
October, 1964, pp. 393-3%). ‘

In this paper the concept of contraction mapping is suggested
as a means of controlling a plant. The paper only introduces
this concept and does not indicate in any detail how one may
design systems using it.

(23] Levin, M. J., "Estimation of a System Pulse Transfer Function in
the Presence of Noise,” PGAC, July, 1964, pp. 229-235.

Coefficients of a pulse transfer function are obtained as

components of eigenvectors involved in an equation associated with
cross-correlation of inputs and outputs. Noisc is considercd and
certain variances are computcd. least squares estimates also

discussed.
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Mendel, J. M., "On the Use of Orthogonal Exponentials in a
Feedback Application,” PGAC, July, 1964, pp. 310-312.

Extension of the identification scheme discussed in Mishkin
and Braun using orthogonal exponentials.

Miller, R. W. and Ro} Roy, "Nonlinear Process Identification
Ueing Decision Theory,” PGAC, (Short Paper) Oct., 1964, pp. 538-SLC.

Narendra, K. S. and McBride, L. E., “Multiparameter Self-
Optimizing Systems Using Correlation Techniques," PGAC January,
1964, pp. 31-38.

Uscs gradient in multidimensional parameter space. Orthogonalizes
to get independent paramecter variations. Results given for linear
time invariant systems. No test signal or parameter perturbation
arc required. Cross corrclation is used to obtain the gradientes.

Narendra, K. S. and Streeter, D. N;, “An Adaptive Proccdure for
Controlling Undefined Linear Processes,"” PGAC October 1964,
pp. 5hS-Jk8.

An extension of paper by Narendra and McBride in PGAC, Jan.,
1964. Cross correlation techniques utilized to obtain gradients
with respect to controller parameter variations. Mean square
error is performance criterion.

Nelson, W. L., "On the Use of Optimization Theory for Practical
Control System Design)' PGAC, Oct., 1964, pp. 469-47T.

Performance bounds relating various competing performance
requiremente of a8 system are cvaluated using optimization techniques
so that uwltimate trade-offs achievable between these requirements
arc well understood. Using a specific example (Satellite Attitude
Control) a perfarmance surface is obtained relating fucl expenditure
and control time to initial conditions. A controller is designed
from this information.

Pearson, A. E. and Sarachik, P. E., "On the Formulation of Optimal
Control Problems,” JACC, 1964, p. 13.

This paper presents @ review of optimization literature
enphasizing the essential similarity of formulations introduced
therein.  Included in the paper is a derivation of the Euler-
Lagrange equations via the gradient of a given index of performance.

Perlis, H. J., "The Utilization of Extremal Correlated Signals to
Reduce the Self-Adaptive Cost Function,"” PGAC (Correspondence)
Jan., 1964, p. 116.

Perlis, H. J., "The Minimization of Measurement Error in a General
Perturbation-Correlation Process Identification System," PGAC,
Oct. 1964, pp. 339-345.
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Using sinusoidal perturbation signals impulsec response
necaswrcments obtained for linear time verying systems. Noise
peasurements included. Cross correlation techniques employed.
When used in an adeptive loop identification not preferred.
Instead an error is measured and minimized.

Racvckii, S. Ya., "Statistical Method for Determining Essentially
Nonlinear Characteristics of Plants Under Control,” A&RC,
Nov., 1964, pp. 814-820.

A method is proposed for determining the essentially nonlinear
characteristics of controlled plants. The method is based on
general results in statistical dynamics. Some aspects of the
method of practical importance are considered.

Sugie, N., "An Extension of Fibonaccian Searching to Multi-
dimensional Cases,” PGAC, January,1964, p. 105.

Self-explanatory title. One problem in the extension is that
the number of points to be searched goes up quite fast.

Tyler, J. S., "“The Characteristics of Model-Following Systems as
Synthesized by Optimal Control,” JACC, 1964, p. 40 (also PGAC,
October, 1964, pp. 485-493).

This paper presents extensions of Kalman's work on the use
of models in optimal control. It is pointed out that the use of
a model extends the useful range of quadratic performance indices
for linear systems.

Zeborszky, J. and Humphrey, W. L., “Control Without Model or
Plant Identification,” JACC, 1964, p. 366.

In this paper, the problem of controling an unknown, nonlinear
time-varying plant is considered. A model of the plant, based
upon measurements, is obtained using a volterra series. Control
is based upon the current response of the plant and on the
“ourrent sensitivity" of the plant to input disturbances.

Belenkii, A. A. and Chelyutkin, A. B., “The Dynamics of a
Continuous Automatic Optimizer for One Class of Systems," ASRC,
November, 1963, pp. T20-T34.

Dynamics of continuous, automatic optimizers in perturbation-
controlled systems are considered for systems with automatic
ad justment of parameters. Transient responses and stability
conditions, under statistical as well as deterministic perturbations
are analyzed. A pseudo cross correlation function to remove
influence of noise.
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Bobrov, Yu. I.; Kornilov, R. V.; and Putsillo, V. P.,
"Determination of the Optimizer Control Law by Taking into
Account the Relaxation of the System to be Controlled," A&RC,
Sept., 1967, pp. 175-182.

The structure of the optimizer's controlling component is
determined by analyzing the system's motion in the phase plane.
A class of optimizing control relay systems where the system
to be controlled is represented by a first-order factor and a
nonlinear element whose characteristic has a single extremum
is considered.

Bozhukov, V. M. and Kukhtenko, V. I., "A Method of Design of
Adaptive, Automatic-Control Systems with the Stabilization of
Frequency Characteristics,” A&RC, December, 1963, p. 869.

A cystem is developed which will determine its own frequency
characteristics. By adjusting gains the system will keep these
characteristics constant in spite of variable plant parameters.

Chatterjee and Bhéttacharyya, "Measurement of an Impulse Response
of a System with a Random Input,” PGAC, April, 1963, pp. 186-187.

An implementaetion of & binary noise cross correlation
technique. .

Chestnut, H.; Duersch, R. R. and Hahn, G. J., “Automatic
Optimizing of a Poorly Defined Process,” JACC, 1963, p. Sb.

A straightforward statistical analysis is applied to a
gradient technique. The effect of each step in the search is
analyzed to seec if the correct choice has been made. Using &
model and assuming a pulse input, transient data is extrapolated
to steady state.

Elkind, J. I.; Green, D. M. and Starr, E. A., "Application of
Multiple Regression Analysis to Identification of Time Varying
Linear Dynamic Systems,” PGAC, April, 1963, pp. 163-166.

System input is applied to model comprised of many filters,
orthogonal to each other, and in parallel. Regression techniques
used to add the outputs to obtain the impulse response. For
time varying case the above is done for “short"” periods of time.
Noise is included.

Evcleigh, V. W., "General Stability Analysis of Sinusoidal
Perturbation Extrema Searching Adaptive Systems," JACC, 1963, p. 91l.

This short note, referring to an unpublished paper, is
concerned with checking sinusoidal perturbation frequencies
with describing functions.
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(437 Eykhoff, P., "“Some Fundamentel Aspects of Process-Parameter
Estimation,” PGAC, October, 1963, pp. 347-357.

A general unifying discussion of various techniques, indices
of performance, etc. for estimating the coefficients of a process.
Several techniques are discussed in detail.

{44] Gibson, J. E., Nonlineer Automatic Control, McGraw-Hill Book
Company, New York, 1963.

Chapter 11 of this text contains discussions of & number of
aspects of the adaptive control problem. Self-optimizing systems
are first defined followed by & presentation of several identi-
fication techniques. Treatments of various esdaptive schemes
follow. The point of view that an adaptive contreol system
consists of three phases: Identification, modification and
decision is precented.

(457 Gicseking, D., “An Optimum Bistable Controller for Increased
Missile Autopilot Performance," PGAC, Oct., 1963, pp. 306-309.

A general form for a closed loop controller is obtained for
a quadratic integral performance index. The controller parameters,
which depend on plant parameters, vary as the plant parameters
vary. Analog results are presented.

(461 Giloi, W., "Optimized Feedback Control of Dead Time Plants by
Complementary Feedback," JACC, 1963, p. 211.

This paper presents techniques for designing controllers for
linear plants with large dead time. The basic structure used in
the technique is an approximate analog simulation of the plant.
The dead time of the simulation is adjusted to keep it in
correspondence with the dead time of the plant.

(47] Harris, R. J., "Trajectory Simulation Applicable to Stability
and Control Studies of large Multi-Engine Vehicles," NASA-TN-D-1838,

August, 1963.

Three-dimensionel, six-degrce-of-freedom trajectory simulation
is formulated. Slosh and elasticity ignored. A numerical example
is included. Results are compared, where possible, with a two=-
dimensional simulation.

(48] Ho, Y. and Whalen, B. H., “An Approach to the Identification and
Control of Linear Dynamic Systems with Unknown Parameters,” PGAC,
July, 1963, pp. 255-256.

Identification is performed using an estimation of the states.



of neglected parameters (i.e., in plant but nct in model).
Discusses stochastic approximation. Plant time variations
are teken into account directly.

[55] Lindenlaub, J. C. and Cooper, G. R., "Noise Limitations of
Systerm Identification Techniques," PGAC, January, 1963, pp. 43-48.

Discussion of system identification using binary hoise and
cross correlation. Impulse response is the result of the
identification.

[551 Lubbock, J. K. and Barker, H. A., "A Solution of the Identification
. Problem", JACC, 1963, p. 191. '

Identificetion is achieved using orthogonal functions
operating on normal plant disturbances. Perturbation signals
or stochastic inputs are not required.

[57] Mosner, P., "“A Perturbation Approach to an Adaptive Sampled
Data Control System," PGAC, April, 1963, pp. 171-172.

A digitelly controlled sampled data system is monitored at
output and resulting changes in plant parameters are determined.
The controller is then altered to cancel the effects of these
variations.

[58] Osovskii, L. M., "Linear Self-Adjusting Simulators with Adjustments
with Respect to the Phase Response," A&RC, September, 1963, pp.165-1Th.

The paper considers & model-adaptive system. A second-order
example is presented.

{591 Osovskii, L. M., "On a Class of Nonlinear Self-Adjusting Simulators
with Adjustment with Respect to Phase and Amplitude Response,”
AZRC, October, 1963, pp. 341-353.

This paper considers a model-adaptive system.

[60] Pearson, A. E., “On Adaptive Optimal Control of Nonlinear Processes,”
JACC, 1963, p. 80. (Also J.B.E., March, 1964, pp. 151-160)

This paper is concerned with identification of an unknown
plant and with the implementation of a controller based upon this
identification. Functional analysis is employed to obtain an
expression for the gradient of an assumed index of performance in
terms of & measurable differential associated with the plant.
Optimization is achieved by applying a sequence of inputs to the
plant which force the gradient to zero.

f611 Pottle, C., "The Digital Adaptive Control of a Linear Process
Modulated by Random Noise,” PGAC, July, 1963, pp. 228-23h.

Plant identification is performed using state variable
estimation and correlation techniques asre used to predict future
plant behavior. The optimal controller minimizes the. predicted
plant over the near future. No input required if plant statistics
‘are known. ) T -
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(62] Puri, N. N. and Weygandt, C. N., "Trensfer Function Tracking of
a Linear Time Varying System by Means of Auxiliary Simple Lag
Systems,"” JACC, 1963, p. 200.

Linear, quasi-stationary, noise-free systems are considered.

{631 Rajaraman, V. and Wentz, H. J., "On Stability and Steepest Descent,
PGAC, (Correspondence) January, 1963 pp. 61-62.

Self-explanetory title.

(641 Rob Roy, “"Predictive Delay Line Synthesizer,” PGAC, April, 1963,
pp. 185-186.
Approximates convolution by summation. Examines input and
output records to get impulse response. Considers effects of
noise. Uses a delay line to aid in this problem.

[65] Roy, R., Miller, R. W., and DeRusso, “An Adaptive Predictive
Model for Nonlinear Processes with Two-level Inputs,” JACC,
1963, p. 204,

Identification time is on the order of 500 to 10,000 time
constants.

{667 Smyth, R. K.-and Nahi, N. E., "Phase and Amplitude Sinusoidal
Dither %daptive Control System," PGAC, October 1963, pp. 311-320.

. Dither frequency uscd to detect changeo in plant characteristics.
Two control loops used: one to adjust loop gain, the other to
adjust loop phase. Results given for some examples.

[67) Waymeyer, W. K. and Sporing,R. W., " Closed Loop Adaptation
. Applied to Missile Control,” PGAC, April, 1963, pp. 157-160.

Feedback gain self-adjusted to maintain closed loop poles
at a certain desired position in the s-plane. Simulation results
given.

{68] Bellman, R. E. and Dreyfus, S. E., Applied Dynamic Programming,
Princeton University Press, Princeton, New Jersey, 1962.

This text covers a wide range of topics involving optimization
via dynamic programming. Computational techniques such as
quasilinearization, and the gradient method are discussed.

(69] Bernard, J. W. and Lefkovitz, I., "An Approach to Optimizing
Control Based on a Generalized Dynamic Model," JACC, 1962.

This paper is on model Adaptive Control. The specific model
studied is a chemical reactor. It is assumed that a steady state
nathematical model of the system and the control for static
optimization are known. ' An adaptive controller is designed to
handle the transient effects in the system.
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Bishop, K. A. and Sliepcevich, C. M., “Techniques for
identification of Linear and Linear Time-Varying Processes,”
JACC, 1962.

This paper discusses & method of obtaining the differential
equations of a Linear system from the system impulse response.
The system may have time-varying coefficients, but these
coefficients must be expandable in a Taylor Series.

Ehrich, F. F., "Analysis ot a Bivariant Optimizing Control,"
J.B.E., September 1962, pp. 410-411.

Two parameters are varied to obtein a minimum via a gradient.
A specific example ies included using resolvers.

Elkind, J. I.; Green, D. M.; and Starr, E. A., "Application of
Multiple Regression Analysis to Identification of Time-Varying
Linear Dynamic Systems," JACC, 1962.

In this technique a test signal (noise) is applied to a
linear system and the resulting inputs and outputs are sampled.
These measurements are used to determine the coefficient of a
set of orthonormal filters. This set of filters is used to
approximate the system transfer function. For good operation,
the epproximate location of the poles of the plant transfer
function must be known.

Frait, J. S. and Eckman, D. P., "Optimizing Control of Single
Input Extremum Systems," JBE, March,1962, pp. 85-90. (Also JACC,
1961. ) ‘

The performance index, an algebraic function of the single
output, is extremized by applying appropriate inputs using a
device called a “divider optimizer."” Experimental results are
given. The plant dynamics are assumed known.

Friedland, B., "The Structure of Optimum Control Systems,® JBE,
March, 1962, pp. 1-11. (Also JACC, 1961)

An optimal controller as dictated by the Maximum Principle
is implemented. The solution of the adjoint equations is
performed on line (assumes knowledge of initial conditions of
ad joint variables). The form of the plant must be known.

Hsu, J. C. and Meserve, W. E., "Decision-Making in Adaptive
Control Systems," PGAC, Jan., 1962, pp. 24-32.

This article considers decision maeking in systems where
the system parameters are not known exactly and their measurement
or identification is obscured by noise.
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Krosovski, A. A., “Optimal Methods of Search in Continuous and
Pulsed Extremumr Control Systems,” Proc. lst International
Symposium on Optimizing and Adaptive Control, 1962, p. 19.

This paper is concerned with finding the components of a
gradient in 8 noisy system. A mean sqQuared error criteria is
used, resulting in an optimel equation for finding the gradient.

foe, M. L. and Murphy, G. J., "An Approach to Self-Adaptive Control

Baged on the Use cf the Time Moment and a Model Reference,*
JACC, 1962.

Nomoto, A., "Dynamic Programming for Direct Optimization Systems,"

Proc. 1st International Symposium on Optimizing and Adaptivé Control,

1962, p. 3%

This paper is concerned with the application of dynamic
programing to the oplimization of a discrecte system.

Pospelov, G. S., "On the Principle of Design of Certain Types of
Adaptive Control Systems,” Proc. lst International Symposium on
Optimizing and Adaptive Control, 1962, p. 1h7T.

This is a general paper which discusses optimization of

‘discrete systems with slowly varying parameters via the Maximum

Principle.

Puri, N. N. and Weyganat, C. N., "Multivariable Adaptive Control
System,” JACC, 1902.

Smyth, R. K. and Davis, J. C., "A Self-Adaptive Control System
for a Space Booster of the Saturn Class,” JACC, 1962.

Prcsents & tracking notch {ilter for decoupling of the
flexible modes of & spacc booster from the rigid body mode.

Whitaker, H. P., “Design Capabilities of Model Reference Adaptlve
Systers,” R-3T4 MIT Inst. Lab., July, 1962.

A review of the results achieved in the development of model-
refercnce adaptive control, and description of performance
capabilities, design procedurecs, and applications.

Bellman, R. E., Adaptive Control Processes, A Guided Tour,
Princeton University Press, Princeton, New Jersey, 1961.

This book contains a number of possible applications of
dynamic prograrming. Emphasis is on optimization problems
rather thah on adaptive control systems.
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McGrath, R. J.; Rajaraman, V. end Rideout, V. C., " A Parametcr-
Perturbation Adaptive Control System,” PGAC, May, 1961, pp. 154-162.

Thic peper considers a model adaptive system with multiple
loops, cach one of which is perturbed by a different test signal.
Knowledge of the form of the plant transfer function is required.

Meditch, J. S., "A Class of Prcdictive Adaptive Controls," Ph.D.
Thesis, Purdue University, 1961.

Thie thesis describes a conirol system which optimizes an
integral-squared performencce index on & per interval basie. The
contr 1 signal is assumed to be a linear cormbination of known
orthonormal time functions. Optimization is achieved by picking
the coefficients of this linear combination so as to minimize the
performance index. Optimization is performed on line.

Mishkin, E. and Braun, L., Adaptive Control Systems, McGraw-Hill
Book Company, New York, 1961. :

This book, edited by Mishkin and Braun, contains & variety of
specialized topics associated with adaptive control systems.
Chapter 1 contains a general discussion of the Adaptive Control
process. In Chapter 3, the identification problem 1s considered.
Several specific adaptive control systems are discussed in Chapter
10. Chapter 11 includes some adaptive processes employing the
digital computer.

Qvarnstror, B., "Transfer Function Determination in the Presence
of Noise for a Set of Significant Input Functions,” Instruments
and lMeasurement, Proc. 5th Internatiocnal Instruments and
Measurement Conference, Stockholm, 1960, pp. 56-T1, 1961.

Schultz, W. C. and Rideout, V. C., "Control System Performance
Measures: Past, Present, and Future,"” PGAC, Feb., 1961, pp. 22-35.

Discussion of general integral criteria.

Truxal, J. G., "Computers in Automatic Control Systems, " Proc.
IRE, 49, 1961, pp. 305-312. |

Review type article to establish the state of the art at
that time.

Weygandt, C. N. and Puri, N. N., "Transfer-Function Tracking
and Adaptive Control Systems,” PGAC, May, 1961, pp. 162-166.

The system automatically tracks parameters in the denominator
polynomial of the plant transfer function. This is achieved
using a number of perturbating signals, each onc of different
frequency than the others.
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Zaborezky, J., Luedde, W. J., and Wendl, M. J., "New Flight
Control Tcchniques for a Highly Elastic Booster,” ASD-TR-61-231,
Sept., 1961.

Uscs a Digital Adaptive'Filte? to separate rigid body and
flexible body signals cven when frequencies are very close
together. Discriminate by differcnce in damping.

Aseltine, J. A. and Anderson, G. W., "A Study to Determine the
Feasibility of a Self Optimizing Automatic Flight Control Syster,”
WADD-TR-60-201, Junc 1960.

Braun, L.; Mishkin, E. and Truxal, J., "Approximate Identification
of Process Dynamics in Computer Controlled Adaptive Systems,” IFAC,
1960, pp. 596-602.

This technique uses orthonormal functions to identify certain
paramcters acsociated with the dynamics of linear systemns.
Ccoper, G. R., Gibson, J. E., et.al., "Philosophy and State of the
Art of Adaptive Systems,” TR No. 1, AF 33(616)-6890, Purdue
University, July, 196C.

This report contains a gencral introduction to the adaptive
control concept. It is a broad literature review which might
serve as a bibliography.

Eckman, D. P. end Lefkowitz, I., “Principle of Model Techniques
in Optimizing Control," IFAC, 1960, p. 970.

This paper ic primarily concerned with methods for obtaining
an optimum contrcller for a given physical plant.

Fleischner, P. E., "Optimum Design of Passive-Adaptivc Systems
with Varying Plants,” Technical Report 400-16, Dept. of E.E.,
New York University, 1950. . '

This report discusses a method for specifying the optlmum
overall transfer function and sensitivity for a given systen.
The difference in outputs of the actual plant and a model is
used as an input to the controller. The cantrol signal is chosen
so as to minimize the expected value of a mean squared error.

Geissler, E. D., “Problems in Attitude Stabilization of Large
Guided Missiles," Aerospace Engineering, October, 1960, p. 2h.

A generel exposition of the rroblems of artificially
stabilizing large guided missiles.

Gibson, J. E., “Adaptive and Self-Optimalizing Systems,” IFAC,
1960, p. 586.

This article is primarily concerned with defining Adeaptive
Control Systers. ‘Some of the basic problems one might encounter
in designing such systems arc discussed. Comments are given on
the epplication of gradient methods to self-optimizing systems.
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[112] Frecimer, M., "A Dynamic Progreuming Approach to Adaptive Control
Processes,"” PGAC, Nov., 1999, p. 10.

Thic paper considers a performance indéx which is a function
of some stochastic dicsturbances. Dynamic programming is used to
converge on the true statistical properties of the disturbances
and to pick a control variable to minimize the performance index.
A stochastic disturbance in the sense used here, might be a
statistically defined target location which the plant trajectory
is supposcd to hit.

[113] Gibson, J. E. and McVey, E. S., "Multidimensional Adaptive Control,"
NEC, 1959, p. 12.

Parareter perturbations and self adjustment to minimize an
index of performance. Experimental results are given.

(114 Gregory, P. C., (Editor), "Proc. of Symposium on Sclf Adaptive
Automatic Flight Control Systems," ARDC, WADC-TR-59-49, 1959.

f115] Lleconav, Y. P. and Liapatov, L. N., "The Use of Statistical Methods
for Determining the Characteristics of Objects. (A Survey),"
A&RC, Sept., 1959, pp. 1254-1268.

Scveral techniques associated with the identification of a
plant transfer function are discussed. Amongst these are methods
fcr computing amplitude and phase characteristic. A method for
determining system weighting functione via correlation techniques
ic also presented.

[116] Margolis, M. and leondes, C. T., "On the Philosophy of Adaptive
Control for Plant Adaptive Systems,” NEC, 1959, p. 2T7.

A section it included discussing the operation of the
ad justing mechanism in an adaptive control.

[117) Margolis, M. and Leondes, C. T., "A Parameter Tracking Servo for
Adaptive ‘Control Systems,” PGAC, Nov., 1959, pp. 100-1ll.

This paper deals with the problem of identifying unknown
coefficients of & system differential equation. A model ic used,
whose differential equation is of the seme form as that of the
plant. The same input signal that is applied to the plant is
also applied to the model. The coefficients of the model are
adjusted so as to bring the output of" the model into correspondence
with the output of the plant. '

{118] Stromer, P. R., "Adaptive or Self Optimizing Control Systems -
A Bibliography,” PGAC, May, 1959, p. 65.

This is an annotated bibliography of adaptive control papers
written before 1959. .
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Henderson, J. S. and Pengilley, C. J., "The Experimental
termination of System Transfer Functions from Normal Operating
Data,” Jowrn. Brit. IRE, March, 1998, pp. 179-186.

A cross correlation technique.

Kalman, R., “Design of a Self-Optimizing Control System,”
Trans. ASME, 80, Feb., 1958, pp. 468-478.

Ermploys a digital computer as a controller. Noisy
ncasurericnts allowed.

Kalman, R. E. and Koepcke, R. W., "Optimal Synthesis of Linear
Sarpling Control Systems Using Generalized Performance Indices,”
Trans. ASME, 80, Nov., 1958, pp. 1820-1826.

This paper presents a simple adaptetion of dynamic programming
to the design of optimal controllers for linear plants. The
papcr deale with sampled data systems, but extensions to
continuous systemes are claimed to be straightforward. .
Stakhovskii, R. I., "Twin Channel Automatic Optimalizer,"” ARC,
August, 1958,.pp. T29-ThO.

This is a report on the results of experimentation with a
two parameter gradicnt search. Equipment was constructed and is
discucsed in some detail.

Woodrow, R. A., "Closed-Loop Dynamics from Normal Operating
Records,” Trans. Soc. Instrum. Technol., Sept. 1958, pp. 101-105.

Cowley, P. E. A., "The Application of'an Analog Computer to the
Measurement of Process Dynamics,” Trans. ASME, 79, 1957, pp. &23-832.

Plant identificetion is schicved by applying sinc and cosine
test signals to the plant input. The analysis assumes that the
test signals will disturb the plant. The system must be
operating open-loop when the identification is performed.

Drenick, R. F. and Shahbender, R. A., “Adaptive Servomechanisms,"”
Trans. AIEE, pt. II, 1957, pp. 286-291.

Input or signal adaptive system. Thc system as presented
is impractical.

Goodman, T. P., "Determination of the Characteristics of Multi-
input and Nonlinear Systems from Normal Operating Records,”
Trens. ASME, 79, 1957, pp. 56T7-575.

A plant identification method is presented in which the plant
impulse .esponse h(T) is broken up into small rectanpgles of width T
over which h(T) is ascumed to be constant. The plant output
autocorrclation function is used in conjunction with the input-
output cross corrclation function to calculate the constant

numbers hy which describe h(T).
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Jensen, J. R., "Notes on Measuremcnt of Dynamic Characteristics
of Linear Systems,” Servoteknisk Forskningslaboratorium, Danmarks
*ekniske hoyskole, 19%7-1959. .

Turin, G. L., "“On the Estimation in the Presnece bf Noice of
Inpulse Response of a Rondom Linear Filter," IRE, Trans. in
Information Theory, March, 1957, pp. 5-10.

Chang, C. M., Goodman, T. P., and Reswick, J. B., "Use of
crrelation Functions to Determinc System Characteristics
Without Applying Artificial Disturbances," Regelungstecknik,

Tagung Geidelberg, 1955, pp. 251-2%6.

Goodman, T. P. and Reswick, J. B., "Determination of System
Characteristics from Normzl Opcrating Records,™ Trans. ASME, T8,
19%6, pp. 259-271. '

This paper discusses identification of a linear system vie
cross correletion techniques. White noise is required for

good resulte.
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An epproach is presented which permits requirements on input-
output response and on disturbance-output response to be mct
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pp. Le-L6; July, 1955, pp. L49-52.
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Systems and an Application to an I. C. Engine,” ASME Publication,

New York, 1951.

In this paper, the problem of climbing & unimodal hill is
considercd. The problem is attacked using both gradient methods . -

and sinuscidal perturbation techniques.



APPENDIX B
EQUATIONS OF MOTION FOR THE MODEL VEHICLE

The rigid body and flexible body equations for the model vehicle
are derived below. Included also is an expression for the bending mowment
at station x. [1,2,3,4,5) are general references on the subject.
Figure B.l defines the pertinent symbols.

Pitch plane rigid body equations are derived as follows. Referring

to Figure B.2, write the expressions for kinetic and potential energy

T = % m(h2 + ire) + % Ixx(s( + 'oR)z
(B.1)
V = mgv
The generalized forces for coordinates u, v, and QR are
Q =(E-X) sin (X + ¢ )+-F-sin (X + ¢, +B) + Ncos (X + o)
u 2 R 2 R R
F F
Q, = (E-X) COS-(X+°R)+2 cos (X+¢R+B) - N sin (X+0R)
F
QOR = (xCP - Xgg) N - (xcG - XB) 5 sin B (B.2)

For these coordinates the equations of motion are
mu = Q,
oV + mg = Q, (B.3)
I (X+ep)=0Q

°r

Substitute into equations (B.3) the geometric relationships

u=uO+ZcosX+YsinX

(B.4)

v vo-_ZsinX+YcosX
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Figure B.1
Definition of Symbols

QR attitude angle of the rigid body

o(x) attitude angle at station x

a angle-of-attack

an ‘ angle-of-attack measured by angle of attack sensor
ﬁR control deflection angle

Z direction normeal to reference

Y ’ direction parallel to reference

2 direction normel to vehicle centerline

b4 distance along vehicle centerline from vehicle base
r(x) mass per unit length of vehicle

m total vehicle mass

Ixx pitch plane moment of inertie sbout CG

v 1£ertial velocity of vehicle

VREL velocity relative to wind

Vw ) wind velocity

a, angle between relative and inertial velocity vectors
v engle between inertial vglocity vector and reference axis
X angle between vertical at launch and desired reference axis
F total thrust

X drag force (longitudinal aerodynamic force)

N normal aerodynamic force

N’ aerodynamic force

R’ thrust of control engines

xCG . center of gravity

f pressure
XCP center of p



Figure B.1

Definition of Symbols (Continued)

X gimbal position
BM(x) bending moment at station x

aerodynamic pressure

A reference cross-sectional area

CZa normal aerodynemic force coefficient

oCy, -

SX_—(X) normal aerodynamic force per unit length

EI(x) bending stiffness at x

yi(t, x) = Yi(x) T}i(t) deflection normal to vehicle centerline

due to ith mode

Yi(x) normalized natural mode shapes

Tli(t) normal coordinates

wg bending frequency of the ith mode

3 g damping of the ith bending mode

Qi generalized force of the 1th bending mode
M, generalized mass of the i bending mode

IE engine moment of inertia about gimbal point
SE first moment of swivel about gimbal point

ME mass of swiveled engine
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and assume X = X = O. Make small angle assumptions for OR’ g, and «.
cos (X + oR) = cos X - ¢p sin X
sin (X+0R) = sin X + ¢_ cos X
R
) (B.5)
N= Na .
F . ~ F
5sinB =38 = R'B
In order to separate the guidance and control equations, let
B = BG + Bp = guidance + control (B.6)
Substituting equations (B.4), (B.5) and (B.6) into (B.3) yields
mh'o +mZ cos X +mY sin X = [(F - X) - Na ¢R] sin X
’ 4.0
.+ U(F - X)°R + R (BG +5R) + N'a] cos X
(B.7)

- xrﬁ; - mZ sin X + oY cos X +mg = [(F - X) - N'owR] cos X
! ’ ‘ '] ’
- [(F-x)oR+R (5G+5R) + N'al sin X
< ** - ) ’
Ixx(x + oR) = (Xep xCG)N a (xCG XB)R (Bg + aR)
The equations governing the nominsl trajectory (gravity turn) are
found by assuming the following conditions hold on the vehicle eqguations

of equations(B.7).

a =By =0

6. =6 =0 =0

R R“R (5.8)
, 2=2=2=0 :
Y=Y=Y=0

The resulting Guidance Equat'ions are

mﬁo-R'BGcosx- (F=-X)sin X =0
ng +mVo + R’BG gin X - (F =~ X) cos X =0 (B.9)
e ’ , _
Ixxx + zB RSG =0

where EB = XCG - XB .
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Substitution of equations (B.9) into (B.7) end grouping terms yields the

following two ecquations
(nZ - (F - X)o - R'Bp - N'a] cos X

+ [m¥ - (F-X)+ N’owR] sin X = C
(B.10)

L R "(X CP)N - (XCG - XB)R Pr

Neglecting a0R and requiring equations (B.10) to hold for all X yields

the Control Equations

og = - @ - By
Z

Y = C5

C3a + cusR + c5oR , , (B.11)

where the coefficients Ci are defined below and plotted as functions of

time into flight in Figures B.3 through B.8.

'

N
G =1 (xcc - xcp)
xxX
RI
=1 (XCG i} xcp)
XX
NI
C5 = o
(B.12)
Rl
Ck T m
F-X
C; = 4
Y
C;=§

The angular relationship necessary to complete the representation
of the rigid body model in equations (B.1ll) is
a = op - VA | (B.13)

where the small angle assumptions yield
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80

a = o - 072 ra, (B.15)

The wind angle relationships for plitch and yaw planes are shown

in Figure B.9. For small angles

Vw cos X
% "V -V_einX (piteh)
v (B.16)
a === (yaw)
W v Y

For the Flexible Body, consider that the bending signals enter as
corrections to the rigid body. The aerodynamic forces of drag and lift
(X and N), are assumed to act just as they do on the rigid body, i.e.,
aerodyngmic coupling is neglected. Figure B.10 shows the flexible body
coordinate system, where only the first bending mode is considered. For
the yaw plane we can write directly that

I % = (Xo -X N+Z (2, -2)
xx R CcP CG 21 2
(B.17)

mZ = N cos ¢_ - X sin ¢ + g (sin ©

R R 1 - 8in 6)

By considering the geometry'of Fig. B.10 it can be found that for small

angle assumptions on Y, (Xﬁ)nl, 05 Y, (XB) Bgs and op.

™
n

o
I

(B.18)

©
"

L =og * B Y (%00

©
L]

I -
¥, (Xa)nl op

and assuming small Ol and 02

e

sin 0, - sin 02 0, - 92 ' (B.19)



- B.1k -

Pitch Plane

Ref
4
v f/
'lv ' v,
\ ) / sing, = o
v ol : / w vV
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!
Figure B.9

Wind Inputs for Pitch and Yaw Planes
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Substituting equations (B.18) and (B.19) into (B.17) the Flexible -

Body Equations are (where additional flexible modes are added in)

hod F O ’ |
b= O - Cfg T )y Xgdny (Xeg = Xg) = ¥, (Xg)n, ]
(B.20)
oo F A
Z=C5a+ChBR+ - ZJY (X )11i
i

Sensors mounted on the vehicle are sensitive to the curvature due

to bending, as well as the rigid body signals. That is

o(x) = ) Yy ey
i
(B.21)
. ‘_“ l .
o(x) = RIMCN
i
and the angle of attack, as measured by its sensor is aT where
o o, ) P . . . .
¢ = Q Z__,Yi (xa)qi . !_L)_in(xa)qi + (X, xCG) oR:, (B.22)
i i

The bending equations are derived by assuming the vehicle is a free-

free beam. The forced beam equation is

P(t, x) = m(x) &L +— Lm( <) ¥ ] (B.25)
t ax

where P(t, x) is the normal force and y(t, x) is the normal displacement

of station X. A solution is assumed to be of the form

A
y(t, x) = 2_’ ¥, (x) 0, (t) (B.24)

Substituting equation (B.2L) into (B.23), multiplying by YJ(x) and

integrating over the length ylelds



L =, L
Jrt, 0 vy @ = ) () [mx) ¥, 0) ¥, () ax +
0 i=1 0
L
ey () [ ) Y1) 1) &) (s.25)
0

From examination of the homogeneous beam equation and the boundary
conditions of zero shear and bending moment at each end of the free-free

beam the following conditions arise: First

L : L
f (EI(x) Yi”(x)]” YJ(x) ax = wigfm(x) Yi(x) YJ(x) dx (B.26)
0 0

and then orthogonality of the Yi(x) with respect to the mass distribution

L
A
J m(x) Yi(x) Yj(x) dx = 0 for i £ J (B.27)
0
Defining
L
< =~/‘P(t, x) Yi(x) dx = generalized force on the 1% node
5 A
L , (B.28)
My =h/\m(x)[Yi(x)]2 dx = generalized mass of the 1% node
0
th
the Bending Equation for the i mode is
Q
" 2 Y4
T]i + wi Tli = Mi (3.298)

A damping term is inserted, with the ii value being chosen empirically

so equation (B.29a) becomes

P L P | (B.29b)
TR R S S T T T | '
The generalized force on the ith mode due to rigid and bending body

causes are found from integration of
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acm :
P(t, x) = R'ﬁRS(XB)-b gha == (x) B (B.30)
with the result
Foodc,, ‘
Q, = R'BRY, (X5) +J gha 5= (x) ¥ (x) ax (B.31) .
0

The bending moment at X for the rigid body is derived by considering
the distributed aerodynamic and reactive forces along the vehicle, where

ac
gAx g—xza

£,(t, x)
) (B.32) |

fR(F, x) =m(x) [Z + (X = XCG) EA] X > XE3

The bending moment is found by integrating the moments over the vehicle,

L
mi(e, 1) = [ (8- %) [t 1) - (e, 1)) s (8.33)
X
Defi
- r~L 3,
I(t, x) = [ (& - x)alt) A= (&) as
X
L
1,(t, x) =f(§ - x) m(g) at (B.34)
X
L
I(¢, x) =f(§ - x) (& - xg) m(g) dg
X
Then
m(t, x) = I,(¢, xJx - L(t, ) - I,(t, x) & | (B.35)

Substituting for ¢, from equations (B.11) and for %

R
w o FX .,
z = Z - m °R = CBG + CILBR (B’ }6)
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The Bending Moment at time t and stetion X can be expressed as
B(t, x) = K (t, x)e + K (¢, x) Bp (B.37)
where
xl(t, x) = Il(t, x) + cl(t) Is(t, x) - C3(t) Ie(t, x)
(B.28)
Kz(t, x) = Ce(t) 13(t, x) - Ch(t) Ie(t, x)
At t = BO seconds into the flight and at x = 90 meters the coefficlents
Kl and K2 are calculasted to yield
B = (1.6x + 12.4B) 10° Kg.m (B. 39)
The above results furnish & set of vehicle equations to describe
the vehicle in yaw or pitch plane considering if és a rigid body with

bending signals superposed on it.
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APPERDIX C

ALGORITHMS AND SUBROUTINES FOR TWO-INTERVAL CONTROL
UNDER THE MODIFIED OPTIMAL CONTROL POLICY
VIA LINEAR PROGRAMMING

(@]
p-
=

nwroduction

In this oppendix, as the title implies, algorithms and subroutines
for two-interval control under the modified optimum control policy via

linear programaing are presented. Here it is assuned that the reader

bae

has Temiliarized himself with the material given im sections 1 through
G of Chapter 5. In the end of the appencdix a Fortran progran for input

and output and the corresponding cate for solution of example 5.3 are

inciuded. This shall help in using the subroutines.

c.2 A‘:(orithm I

fen

The alporithm for solution of problem VI as stated in section 5:5
is as follows.
Given the plant equations as in Equations (.9) and {5.1¢) and
%(K) = 0, K=0,
(1) Construct the coefficient matrix as in Equation (5.28).
(z) Construct the right hand side vector as in Equation (5.28).
() Using Simplex methods solve for the unknowns such that the
right hand side of Equation (5.29) is minimum.
(+) store x(K + 1), eand u(K).
(=) Replace x(K) by x(K +1).
(¢) K=K+ 1.

(7) 1 AK<T, go to 1; if &.K > T, stop.

Pan)
o>
i}
[}
}_J
b
¥3
just
so]
]
4
H.
Q
Par
-
[
n

total period of interest.)

If the matnematical model of the system is described by a set of



differenrtial egquations, 1% must Le guantized using Lhe procedure descrited
in section 5.6.

In v

Foe

ew of the avove algoritha the following individuzl subroutines
are developed. The use cf the subroutines fer solution of preblem VI

el 4 I = " < RN P A i R JERE S T o
with M= 1, will ve explained through alporithm IT.

C.3 Subrouline QUANT

—

dentificzticon

QUAKRT - Fortran {II) cuantizoticn subroutine.

Purpose

To quantize in time lineer continuous system of the type

Restriction
Maxinmum al;owable order of the system is 1lu. For systems of
nizher order change the dimension statlement.
Usage
The routine is entered by the following stztement
CALL ( NC, DELT, CTOL, AC, PHI, BC, CC, ¥, D, ITPHI )
where
Guantity Input/Output  Dimension Purpose
NC IN scalar Order of the system.
DELT IN scalar Quantization of the system.
CTOL N scalar Tolerance for the elements of PHI.
AC IN (NCxIC) Coefficient matrix of the continuocus
system.
PHI CUT (NCxNC) .Coefficient matrix of the quantized
systen. '.

BC IN (NC) Control variable coefficient vector.



(]
.

N
t

Quantity Input/Output  Dimension Purpose -

cc IN (Né) Disturbance vector

H OUT (RC) Corresponds to BC in quantized version.
D ouUT (NC) Corresponds to CC in quantized version.
ITPHI ouT scalar Nucber of terms considered in the

series for PHI.
Method
The method used for quantization is given in section 6 of

Chepter ©.

Listing

Listing of the subroutine is given on the next page.

C.4 Subroutine LP2STD

ldentification

LP2STD - Fortran (II) Subroutine.

To formulate the two-interval control problem in standard form
of linear prograrming. The routine essentially generated Al and Bl
(dctined tolow).

Restrictions

Al and Bl are gencrated by the subroutine as shown in Equations
(C.1) and (C.2). Al and Bl are obtained by adjoining Equation (5.29) to
Equation (5.28) with zero as the first element of Bl. Note that row
1 in Al corresponds to the coefficients of the variables in the performance
index. Rows 2 to 2n + 1 (inclusive) correspond to the coefficiente of the

rlant cquations. The remaining rows correspond to the inequalities, the



OD0DOONOODOOO

510

S11
512

509

513

Sia

8516

S18

S17
523
S19
s18

520
521

S22

- C.L

SUBROUT INE QUANT

DISCRETIZE CONTINUOUS SYSTEM

SUBROUT INE QUANT(NC¢DELTsCTOLsACIPHI ¢BC4CCeHeDe ITPHI):
DIMENSION AC(104¢10)+PHI(100¢10)¢BC(10)¢CC(10)sH(10)¢D(10)0
1AC1¢(10410)¢AC2(10410)¢D1(10410)

NC &= ORDER OF COEFF¢ MATRIX

DELT GQUANTIZATION PERIOD

CTOL = TOLERANCE FOR ELEMENTS OF PHI

AC = COEFFICIENT MATRIX OF CONTINUOUS SYSTEM
PHI= COEFFe MATRIX OF QUANTIZED SYSTEM

BC = CONTROL VARIABLE COEFFICIENT VECTOR
CC = DISTURBANCE VECTOR

H = CORRESPONDS TO BC IN QUANTIZED VERSION
D = CORRESPONDS TO CC IN QUANT]ZED VERSION
ITPHI = NO, OF TERMS CONSIDERED IN THE SERIES FOR PHI
DO 509 1s14NC

DO 509 Js1aNC

IF(1=-J)51043114510

ACl(JeJ)=0oe

GO TO 512

AC1(1eJ) =140

AC2(10J)=DELT#AC([¢J)
Dl(loJ)HDELT!ACl(loJ)+(DELT/2.’§AC2(!oJ>
PHI(T1¢J)mACI( e JI4+AC2(14J)

FACT=1,

FACT=FACT+1,

L=0

DO S14 1=]4NC

DO 314 JUm]eNC

AC1(14J)mAC2(1¢J)

DO 515 1=m14NC

DO 51% Jal¢NC

AC2(1eJ)=0,

DO 516 Ks14¢NC
AC2(10J)mAC2( 1o JISACIIsKI#ACLIK s )
AC2(1+J)m(DELT/FACT)#AC2(1¢J)

CONTINUE

DO 517 11 ¢NC

DO 517 J=14NC

D1(1+J)=D1 (1 s J)+(DELT/{FACT4+14))#AC2(T¢J) .
PHI(14J)sPHI( e JI+AC2(T4J)

IF(FACT= S54)51345234523

DO 518 1=§aNC

DO 518 Js§INC

IF (ABSF(AC2(14J))=CTOL)51943184¢518

Lel+]

CONT INUE

IF(L=NC#NC)5204¢ 5214521

GO TO 813 Y

DO 322 1wi4NC

H(1)3040

D(1)=040

DO 522 Js] oNC

D(1)=D(1)4D1 (14 JIHCC(I)
MOT)IRD1( T4 J)RBCIII4HTY

ITPHI=FACT

RE TURN

END



first four inequalities being the constraints on u(XK) and u(K+l) - the

control signals. This order must be preserved. Non-zerb elements in the t
rectangular blocks in Equations (C.1) end (C.2) must be read‘in extérhall;, o
before calling LP2STD. The dimensions of the various variebles involvéd

are restricted by the dimension statement (see the listing of the sub-

routine).
</ (K+1) ' (K+2) 7' (K) 7/ (K+1) 0 0
I 0 -H(x) 0. 0 0
Al = -A(K+1) ¥ o H(K+1) 0 o | (c1)
ﬁln(ml) o Bn,n+l(x+l) 0 1 0
L 0 Bln(K+2) o) §n’n+1(x+2) 0 1
B(x)
Bl =| 4(K+1) (c.2)
a(K+1)
a(k+2)
L— o
Usage
The routine is entered by the following statement:
CALL LP2STD (N, NN, M, XIC, H1, H2, D1, D2, PHIl, PHI2, A, B, Al, Bl) -
where

Guentity Input/Output Dimension  Purpose
N IN scalar order of the system
NI IN scalar Number of the columns of A-matrix

M .IN scalar Number of the rows of A-matrix



Quantity Input/Output  Dimension

X1c IN (x)

H1 IN (N)

H2 IN (W)

D1 IN (N)

D2 IN (N)
PHI 1 IN (NxK)
PHI 2 IN A (NxN)
A OUT (MxNI)
B ouT (M)

Al IN/OUT ( MxNN)
Bl IN/OUT ( MXNN)

Purpose

Initial conditions for the
system.

Control coefficient vector
Ceontrol coeflicient vecto
Disturbance vector for t =
Disturbance vector for t =
Coefficient matrix for t =
Coefficient metriy for t =
Coefficient matrix of L.P.
standard form.

Right hand side vector for
in standard form.

Seme as A.

Same as B.

dynamic

for t

L}
ct
—~
&
~

for t o= v(X-1).
t(K).
t(K+1).
£(X).
t(K+1).

probvlem in

L.P. problem

For time-invariant systems Hl = H2, D1 = D2 and PHI 1 = PHI 2.

Listing

The listing of the subroutine is given on -the next’ page.



e Na e n Ra ke aRa Ko e Na N el O

e X e K Ra e NeNa s e Ra N el o)

0onn

onoon

12

13

-C.7 -

SUROUT INE LP2STOD

2-INTERVAL LePs PROBLEM IN STANDARD FORM

SUBROUT INE LPZSTD(N.NN.HQXICOH!OHZQD‘ODEQP”llQPHlaoloﬂoAloal3
N= ORDER OF THE SYSTEM - '
NN= NOs OF COLUMNS OF A~MATR X

Ma NO, OF ROWS OF A=MATRIX

XICsINITJAL CONDITIONS FOR THE DYNAMIC SYSTEM

Hls CONTROL COEFF, VECTOR FOR TsT(K)

H2s CONTROL COEFFe VECTOR FOR TsT(K<+l)

Dl= DISTURBANCE VECTOR FOR TaTi(K)

D2s DISTURBANCE VECTOR FOR TsT(K+l)

PHlla COEFFs MATRIX FOR TaT(K)

PHI2n COEFFe MATRIX FOR TaT(K+l)

As COEFFo MATRIX OF LePo PROBLEM IN STANDARD FORM (OUTPUT OF SUB.Y
B= RHS VECTOR FOR L¢Pe¢ PROBLEM I[N STANDARD FORM (OUTPUT OF 3UBs)
Als SAME AS A (INPUT TO SUBROUTINE)

B1s= SAME AS B (INPUT TO SUBROUTINE)

DIMENS I ON XIC(lO)cHl(10)0H2(10)ODI(10)ODZ(10)08(40)031(40)0
lPH!l(IOoIO)opHIZ(lOolO)oAI(40060)0A(40060)0B2(ll)

H22 H- VECTOR FOR TsT(K+1)

Di= DISTURBANCE VECTOR FOR TaT(K)

D2= DISTURBANCE VECTOR FOR TsT(Kel)

Az COEFFe MATRIX OF LePe PROBLEM IN STANDARD FORM

B= RHS VECTOR FOR LePs¢ PROBLEM [N STANDARD FORM

Na ORDER OF THE DYNAMIC SYSTEM

NNz NOg¢ OF COLUMNS OF A=MATRIX

Ma NO, OF ROWS OF A=MATRIX

XIC=INITIAL CONDITIONS FOR THE DYNAM:C SYSTEM

CONSTRUCTION OF A-MATRIX STARTS
ALL +] OR =} DUE TO STATE VARIABLES

1Sa2#¥N+ 1

DO 12 1=2,415
J2s2%(1~1)
JinJ2-1
Al(lsJl)mel,40
AllloeJ2)m=],40
CONT INUE

COEFFICIENTS WHICH ARE ELEMENTS OF STATE TRANSITION MATRIX

16sN+2

DO 13 1=164¢15
Iisl=(N+1)

DO 13 Jsl¢N
Jia2#J=]

J2s2®J
Al(leJl)m=PHIZ2(114J)
Al(leJ2)mePHIZ2( 110N
CONT INUE

COEFFICIENTS WHICH ARE ELEMENTS OF H= VECTOR

11sN+}

DO 14 (=241}
J1sABN+ ]
J2mARNSZ
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Al(ledl)m=H1(]~-1)
Al(JeJ2)meHI(I-1)
CONT INUVE

{1aN+2

1 228N+
JIua#N+ I
J2uARNL 4

DO 18 I=l1e1l2
|3s]=N=1
Al(leJdl)e=H2(]3)
Al(leJ2)sH2(13)
CONTINVE

COEFF ICIENTS DUE TO CONSTRAINTS ON CONTROL VARIABLE

1282%#N+2
13a]2+1

t1as] 242
{S=124+3

Jima N+ ]
J2uJl4+1
J3mJ142
JasJl+3
Al(l2e¢eJl)m4],0
Al(12¢J2)m=1,0
Al(13¢J1)==1,40
Al(13¢J2)m41,0
Al(l4¢J3)me],e0
Al(144J4)m~1,0
Al(1B¢J3)m=1,0
Al(1S5¢J4)u4]1,60

SLACK VARJABLES COEPFICIENTS DUE TO ALL CONSTRAINTS

I1s28N+2

J1ndENG+ &

DO 16 IslieM

JR2EN43 41

Al(loeJd)mal,e0

CONT INUE .

Al ee COEFFICIENTS DUE TO CONSTRAINTS OTHER THAN THE CONTROL
VARIABLE MUST BE READ EXTERNALLY

CONSTRUCTION OF B1)

11sN+]

DO 25 =241
B82(1)=0,4,0

DO 17 1=2411
[2ul=~=]

DO 18 J=ml ¢N
B2(1)=B2(I)+PHI1(12¢J)8XIC(J)
Bl(1)=B2(¢1)1+D1( 12)
] 1eN+2

12uN®24]

DO 19 I=sl1412
J3]~N=1
B1(l1)Y=D2( V)

Bl ee ELEMENTS DUE TO ALL CONSTRAINTS MUST BE READ EXTERNALLY



KoUT (2)

KOUT (&)

KOUT (&)

Kout (7)

final inversion if done).

]

inversions).

Number oI pivots done.

Infeasibility flag, 1 = infeasible; U = feasible.

i
L]

Final pivot column selected.

The NWAZ components of XZ are as follows:

XZ

XZ

XZ
XZ

XZ

Listing

(1) through X2 () = State veriables corresponding to t = <

(N+1)

(2N+1)
(en+2)

(2N+3)

-

through XZ (2N) = State variables corresponding to

t = t(K+2).

Control variable for t t(K)-

= Control variable for t = t(K+l).

through X2 (NXZ) = "r" slack variables.

Humber of iterations since last inversion (ignoring

Number of inversions done (inecluding final and initial

The listing of the sutroutine LP2MAS is given on the next page.
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SUBROUTINE LP2MAS

MAIN SUBROQUT INE FOR TwO INTERVAL CONTROL VIA LINEAR PROGRAMMING
SUBROUT I NE LPZMAS(lNFlXoTOL.HEDERoAC.BCQCCOPHlOHQDOXZlOAOBOAlOBlO
IKOUT ¢ Ze XZ eNXZ) o

INF1X=INPUT (VECTOR) TO SIMPLX SUBROUTINE

TOLs INPUT (VECTOR) TO SIMPLX SUBROUTINE

HEDER= INPUT (VECTOR)

HEDER(1)=QUANT I ZATION PER]IOD

HEDER(2)s TOLERANCE FOR QUANTIZATION

HEDER(3)» ORDER OF DYNAMIC SYSTEM

AC= COEFFs MATRIX FOR CONTJINUOUS SYSTEM

BC = CONTROL VARIABLE COEFFICIENT VECTOR

CC = DISTURBANCE VECTOR

PHl= COEFFes MATRIX FOR QUANTJZED SYSTEM

H= CONTROL COEFFs VECTOR (QUANT]ZED)

D= DISTURBANCE VECTOR (QUANTIZED)

XZ1=INITIAL CONDITIONS FOR THE DYNAMIC SYSTEM

As COEFFe MATRIX OF LePe PROBLEM [N STANDARD FORM (OUTPUT OF SUBe}
Bz RHS VECTOR FOR LePe¢ PROBLEM [N STANDARD FORM (OUTPUT OFf SUBe)
Als SAME AS A (INPUT TO SUBROUTINE)

Bl= SAME AS B (INPUT TO SUBROUTINE)

KOUTs OUTPUT CONDITIONS FOR SIMPLEX SOLUTION

2= SOLUTION VECTOR OF NON-NEGATJIVE VARIABLES

XZ= SOLUTION VECTOR

NXZ= NUMBER OF VARIABLES IN THE SOLUTION VECTOR XZ

DIMENS] ON INFIX(B)sTOL(A)IAC(10¢10)¢BCI10)¢CC(10)sPHI(10610)0
IH(IO)OD(XO)OXZI(IO)QA(40060)OB(QO)QAI(40060)08)(‘0)!K0UT(7)0
22(60)0XZ(60)CHEDER(S)OERS(B)OJH(“O)0X(40)OP(40)OY(QO)0K5(60)O
3E(40¢40)

N=INFIX(2)

MaINFPIX(4)

TQUAN=HEDER( 1}

TOLERaHEDER( 2)

Nl =HEDER (3}

PRM=0,40

CA'.L QUANT(N] ¢ TQUANSsTOLERsACsPHI ¢BCeCCerHsDITR)

CALL LP2STD(N1 «NiMiXZIsHeHeDeDePHI «PHI¢AeBoAleB1)

CALL SIMPLX‘l~Flx.AOBOTOLlpRMCKOUT‘EpS.JH'x.P.YCKBQE’

DO 10 I=14N

Z(1)=0,40

DO 11 (=2M

JHHaJH( 1)}

IF(JHH) 11411412

ZUJHH)YaX (]}

CONT INVE

N2=2#N1+2

DO 13 1sieN2

XZ(1)uZ(2#]~1)=2(2#1])

]1=2%#N})+3

NXZ=N—-2#N|~2

DO 14 J=]]eNXZ

Jalli+l~1

XZ(1)=Z(JD) s

VALUES OF THE STATE VARIABLES AND THE SLACK VARJABLES HAVE
BEEN STORED IN VECTOR X2 .

RETURN

END



C.7 Suproutine LPZMAT

This subroutine is identical to LP2MAS in all respects, except it is
for time-varying systems. The calling sequence for this subroutine is
CALL LPEMAT-( INFIX, TOL, HEDER, AC, BC, CC, PHMI 1, H1, D1, XZ1,
A&, B, Al, Bl, KCUT, Z, XZ, NXZ ).

Tne listing of the subroutine is given on the next page.
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SUBROUT INE LP2MAT

MAIN SUBROUTINE FOR TWO INTERVAL CONTROL BY LINEAR PROGRAMMING
FOR TIME VARYING SYSTEM

INFIX=s{NPUT (VECTOR) TO SIMPLX SUBROUTINE

TOL= INPUT (VECTOR) TO SIMPLX SUBROUTINE

HEDERs [NPUT (VECTOR)

HEDER( 1) =QUANT1ZATION PER]OD

HEDER(2)= TOLERANCE FOR QUANTIZATION
HEDER(3)= ORDER OF DYNAMIC SYSTEM

AC» COEFF, MATRIX FOR CONTINUOUS SYSTEM

BC = CONTROL VARIABLE COEFFICIENT VECTOR

CC = DISTURBANCE VECTOR
PHIl® COEFFs MATRIX FOR TeT(K)

Mi= CONTROL COEFF, VECTOR FOR TeT(K)

Di= DISTURBANCE VECTOR FOR TaT(K)

XZ1=INITIAL CONDITIONS FOR THE DYNAMIC SYSTEM

Az COEFF, MATRIX OF LsP, PROBLEM IN STANDARD FORM (OUTPUT OF SUBa)

B= RHS VECTOR FOR LePes PROBLEM IN STANDARD FORM (OUTPUT OF SUBs})

Alm SAME AS A (INPUT TO SUBROUTINE}

Bix SAME AS B (INPUT TO SUBROUTINE)

KOUT= OUTPUT CONDITIONS FOR SIMPLEX SOLUTION

2= SOLUTION VECTOR OF NON~NEGATIVE VARJABLES

XZ= SOLUTION VECTOR
NXZ® NUMBER OF VARIABLES IN THE SOLUTION VECTOR X2

SUBROUT INE LP2MAT(INFIXsTOLIHEDERVACBCsCCoPHI1 4 H14D14XZ10ABuAL
1B1 ¢sKOUT ¢ Z e XZoNXZ)

DIMENSION INFIX(8)¢TOL(4)+AC(10410)¢BCC10)+CCI10IsPHITIL10010)0
1H1(10) XZ1(10)eA(40+60)¢B(A0)sA1(40¢60)4B1(40) 4KOUT(T)
2Z(60)4XZ(60) 4+ HEDER(S) sERS(B) ¢ JH(A0) ¢ X(40)eP(40) ¢Y(40) ¢ KB(60) s
3E(Q0440)4D1110)eD2110)eMH2(10)PHIZ2(10410)

NsINFIX(2) '

Mz INFIX(4)

TQUAN=HEDER( 1)

TOLER=HEDER{ 2)

N1=HEDER ( 3)

PRM=0 40

CALL OQUANT(N]1 +TQUANTOLERsAC¢PHI2¢BC4CCoH24D2¢1TR)

CALL LP2STD(NI «NsMeXZ1eHI¢H2¢D1¢D24PHI1 sPHIZ21AsBeAL4B])

CALL SIMPLX(INF IX4AeBosTOLIPRM{KOUTsERS s IHIXsP oY KBE)

DO 10 I=]eN

Z(1)=0,0
DO 11 l=24M

JHHEJIH( 1)

IF(JHH) 11411412

Z(JIHH)Y =Xt )

CONT INUE
N2=2#N1+2
DO 13 [=14N2
XZ(1)=Z(2#]=1)=Z(2%])

11=2%N]1+3
NXZ=N-2#N}-2
DO 14 ]alil¢NX2Z _

Jrll#r=1 = -

X2(1)=2(J) B
DO 15 1=14N1
DO 16 J=m]l N1
PHIL(1eJ)=PHIZ2(1sJ)
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H1CI)=H2( 1)
D1(1)=D2(1}) ‘
VALUES OF THE STATE VARIABLES AND THE SLACK VARIABLES‘HAVE
BEEN STORED IN VECTOR XZ

RE TURN

END



C.8 Algorithm II C s
Subroutine LPPIAS (or LPZMAT for timc-varying syctems) together with
QUANT, LP2STD and SIMLX incorporate the first four steps of algorithm 1.
So using these subroutines, the algorithm 1 can te rewritten as follows:
1. Road ﬁhe input data necegsary for LP2MAS ( or LP2MAT) including
¥zl = (k). K = O.
2. Call LPEMAS (or LPEMAT).
Z. Sicre E(K + 1), ulk).
4. Replace XZI by x(K + 1). = .
5. IfAaK<T, goto v; it AK>T, stbﬁ. | :

O. Go to 2 for time-invariant system; go to 1 tor time-varying system.

C. 9 Ex&_{..:gle ' o BRI Ce B RTINS K e E ..,;'_,",:
Usc the above algorithm to solve the optimum control provlem os
4

stated in example 3 of Chapter 5, for a period of 1C seconds with guanti-

zation period of C.1 seccnd.

]

o
Ou

e Fortran program Lor input-oulput statements and the calling

T

the subroutinc LP2MAS, is listed below. Following this program, the data

is listed. The solution obtained is shown in Figure 5.10.
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SOURCE PROGRAM FOR INPUT=OUTPUT

DIMENSION INFIX(8)eTOL(4) HEDER(6)4ACI10¢10)eB3C(10)¢CC(10)0
1PHI{10010)¢H{10)+D(10)+XZ1(10)¢XZO(10)1A(40060)+B8(40)¢Al(40:60)
2B1(80) ¢ KOUT(T)¢Z(60) ¢XZ(60) ¢+NUT(10)

READ INPUT TAPE 54¢200¢(NUT(1)slm1e10)

READ INRPUT TAPE Se201¢(INFIX(1)e]l=1e8)

READ INPUT TAPE 542039 (HEDER(I)elnle6)

READ INPUT TAPE 5¢202¢(TOL(1)elm148)

NsfNFIX(2) ~
MaINFIX(&)

N1 =aHEDER (3)

NON1sHEDER (4)

NONZ2=sHEDER( 5}

READ INPUT TAPE S54¢203¢(XZ0O(1)elIsleN1)

READ INPUT TAPE S5¢2034(BCI1)e1=1eN1)

READ INPUT TAPE Se203¢(CC{T1)elm1eN1)

READ INPUT TAPE S:203¢((AC(1eJ)eJsleNl)elumleN1)

CC(2)aCC(2)*HEDER(6)

CC(3)=CC(3)*HEDERI(6)

DO 19 I=lM
B1(1)=0,40 . )
‘DO 19 Js=i N ’ : o ‘ e e

190 A1({1eJ)=0,0
DO 20 I=] ¢NON2
20 READ INPUT TAPE 5:206¢114(B1(11))

B1(12)=B1(12)=HEDER(6)

B1(13)=B1(13)+HEDER(6)

B1(14)2B1(18)~-HEDER(6)

B1(15)=B1(15)4¢HEDER(IS)

B1(16)=B1(16)~1,845#HEDER(6)

B1(17)=B1(17)+1 +BASHHEDER(6)

B1(18)=B1(16)

B1(19)=B1(17)

DO 21 I=14¢NON]

21 READ INPUT TAPE 5¢205¢11sJ10CAI(130J1))
200 FORMAT(101%)
201 FORMAT(815)
202 FORMAT(A4E15.8) -
203 FORMAT(6F12¢6)
204 FORMAT(13.F15.8)
205 FORMAT(2134F1%,8)

WRITE OUTPUT TAPE 64R2104(1eNUT(1)s121,10)

WRITE QUTPUT TAPE 64100
WRITE OUTPUT TAPE 64211 ¢(1¢INFIX(I)eInle8)

WRITE OUTPUT TAPE 64100
WRITE OUTPUT TAPE 642124(1+HEDER(1)e1%146)

WRITE OUTPUT TAPE 64100
WRITE OUTPUT TAPE 6:¢213¢(1¢TOL(1)sIm104)

WRITE OUTPUT TAPE 64100
WRITE OUTPUT TAPE 6¢217¢(1eXZ0(1)e1=1eN1)

WRITE OUTPUT TAPE 64100
WRITE OUTPUT TAPE 64¢214¢(1¢BC(1)slIwioeNI)

WRITE OUTPUT TAPE 64100
WRITE OUTPUT TAPE 64215:(1¢CCC1)elm1eNI)

WRITE OUTPUT TAPE 64100
WRITE OUTPUT TAPE 6:216+((TeJeACIIeJdeImleNTI) o TnloN])
WRITE OUTPUT TAPE 64100
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FORMAT (10(AHNUT (¢ J2¢3H )=, 13¢1X))
FORMAT(EB(SHINFIX(412¢3H )melaelX))
FORMAT (3(6HHEDER(¢ I243H )nF15:8¢2X))
FORMAT(Q(QHTOL(QIZ.3H 1= sE1548e2X))H
FORMAT (6(3HBC(412¢3H )=4Fl2e642X))
FORMAT (6(3HCC(+12¢3H YueF12e602X))
FORMAT(S(3HAC(+12¢1Hee 12¢3H ImeF124642X))
FORMAT (6(AHXZO(¢]12¢3H )34F11e6e42X))
ITRAT=0

ZED=Q6O

DO 51 Is1eN1}

XZ1(I)=X20(1)

11T=0

1T=1

I TMAXaNUT (3)

DO 150 [s14]TMAX
IF(IT-(NUT(“,+1))27028028

1T=)

CONT INVE

CALL LP2MAS({INF I1X¢sTOL HEDERsACsBCeCCoPHIsHeDIXZI0A0B

1A1481eKOUTsZeXZ oNXZ)

ITRAT= TRAT+1

lF(NUT(l)-lTRAT)54055055

WRITE OUTPUT TAPE 64221 ({1 oJePHI(TeJ)edmloeN1)eimleN1)
WRITE OUTPUT TAPE 64100

WRITE OUTPUT TAPE 6¢222¢(1eH(1)eIm1eN1)

WRITE OUTPUT TAPE 64100

WRITE OQUTPUT TAPE 6¢223¢(1eD(I)e =l eNl)

WRITE QUTPUT TAPE 64100

CONTINUE

IF(NUT(2)=ITRAT )56¢57¢57

WRITE OUTPUT TAPE 6,101

WRITE OUTPUT TAPE 6:¢228¢(1¢2(1)s1m1N)

WRITE OUTPUT TAPE 64100

WRITE OUTPUT TAPE 64225¢((1eJeA(TeJ)edmloN)alnl¢M)
WRITE OUTPUT TAPE 64100

WRITE OUTPUT TAPE 6¢226¢(1eB(1)ei=l M)

WRITE QUTPUT TAPRPE 64101

CONT I'NUE

IF(IT=1)25026425

[1Tel1T+1

Ti1=117

DUMMYeNUT (&)

TIMEs({ (DUMMY#T] ])=(DUMMY=~]4 ) ) *HEDER(1)
ALPHIEXZ(1)=06001928XZ(3)¢+HEDER(6)
ALPH2=XZ(4)~0400192%#XZ (6)+HEDER(6)
BMI=+10845*XZ(l)'000355*XZ(3)*120380‘x2(7)+l084$§HEDER(6)
BM2=+1QBQS*XZ(Q)'000355'XZ(6)+120380*XZ(8)+IQBQSQHEDER(G)
ZED=ZED+XZ(3) #HEDER(1)

IF(NUT(5)~1331:¢32433

CONT INUVE

WRITE OUTPUT TAPE 6:229+1TRAT

WRITE OUTRUT TAPE 6¢227¢(1eKOUT(1)el=14¢7)

WRITE OUTPUT TAPE 64100

WRITE OUTPUT TAPE 6:¢2284(1¢XZ(1)s1s]1¢NXZ)

WRITE OUTPUT TAPE 64230 ALPH1 ¢ALPH2¢BM1 ¢BM2¢2ED
WRJTE OUTPUT TAPE 64100

NUT(S) sNUT(S) =1

WRITE OUTPUT TAPE 64234

Pl=5.0i(ABSF(XZ(I))+ABSF(XZ(A)))+0002'(ABSF(XZ(S))QABSF(KZ(O)"

v
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32 WRITE OUTPUT TAPE 64235 ¢TIME¢XZ(1)eXZ{2)eXZ(3) 4 XZ(T)e
LALPH1 ¢BM] 4KOUT (1) ¢ZED
2% 1T=]lT+}
DO 58 1=l.N}
858 XZj(1)sX2(1)
IF(3-KOUT(1))115141504181
221 FORMAT(4(AHPHI(¢12¢1Mee1243H 1=4E15e842X))
222 FORMAT(S(2HH(¢12¢3H )34E154B842X))
223 FORMAT(S(2HD(¢12¢3H (= ¢E15,842X))
224 FORMAT (5(2HZ(+12¢3H )8 4E1548¢2X))
225 FORMAT(6(2134F124642X))
226 FORMAT(7(13¢F124642X))
227 FORMAT(1HO«/T(SHKOUT (s 1243H )me15¢2X))
228 FORMAT (S(3HXZ(+12¢3H )13.E154842X))
229 FORMAT ( 1SHITERATION NOe 3s15//)
100 FORMAT (1HO)
101 FORMAT®IHL)
150 CONTINUE
15] CONTINUE

230 FORMAT (OHALPHA( 1)5:E15e842Xe9HALPHA(2)u¢E15¢8¢2X+6HBM( 1) a¢E15480
1 2Xe6HBM(2)meEL1SeBe2XsAHZIED=+E15+8)

231 FORMAT(1H1)

233 FORMAT(2F1248) , ) Co

234 FORMAT (QXe4HTIME 12X ¢3HPH] ¢ 10X s THOPH] /DT 49X ¢ SHDZ/DT+ 10Xe AHBETA.
111X eSHALPHAS 1 1XeaHB oMy ¢ 7X e THKOUT (1) eOXe2H'2Z///) '

235 FORMAT(3XeFTe2¢5Xe6(E130642X)415)

1000 CONTINUE

c
CALL EXIT
END
D ATA
1 1 101 1 2
4 32 a0 23 2 1 100 o]
Cel 000000001 360 6440 16 OslT744
+0e 10000000E=084+0¢10000000E~08=0s 10000000E-064+04 10000000E~10
Ooe 00 Oe0
060 -0 sa4a8 10493
0.0 040791 5459
O 10 Oe0 00791 00 =¢000153
264939 Q60 ~-e0108 -
8400872
94040872 . .
104040872 :
11400872
12406262
1340262
14404262 ’ o
1S5+0e262 L o L
1642+ 24 '
17+2e24
1842+ 24
1942+ 24
20441740

21441744
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2244 1744
23441744
1 14860
1 245.,0
1 3+40,0
1 440,40
) 540,02
1 640,02
1 T+5.,0
1 84560
1 94040
1 1040,0
1 1140,02
1 12+40,02
1 134040
1 14+0,0
1 154040
1 16+0-0
12 l+160
12 2=1,60
13 1-1,0
13 2+1.0
14 T+ 160
14 8~1,0
15 T7=140
15 B+1.0

12 5-0.00192
12 6+0.,00192
13 S5+0.,00192
13 6+-0,00192
14 }11=-0,00192
14 1240400192
1% 1140,00192
15 12=0600192
16 1414845
16 2=1,¢845
17 1-1.845
17 2+ 14845
18 741.848
18 B8=1.845
19 7=1.845
19 84).845
16 5-¢00355
16 64400355
17 54.00355
17 6400355
18 11-,00355
18 124400355
19 114400385
19 12~,00355
16 13+12438
16 14-12,38
17 13=12438
17 14+412,38
18 15412438
18 16~-12+38
19 15-12+38
19 16412.38
20 1+1.0

20 2«140

21 1=1,0



21
22
22
23
23

-
™
N

- 24140

T+1e0
8=~140
T7~140
8+1,0



C.10

As a

Reconmnendations to Improve Algorithm II

The truncation ecrror encountered in the SI!MFILX routine is cumulative.

result, if the states are calculated substituting the control variable -

in the plant equations, they differ slightly from the results obtained

using the above algorithm. The difference increases as the interval over

which the solution is found increases. This error can be avoided by the

following improvemeni in algorithm II.

C.11

Algorithm III

Steps 1 and 2 as in algorithm II.
3{(a).  8ubstitute u(K) in the plant equations and calculate x(K+1).
7(b). Store u(K) and x(K+l1) as calculated in 3(a).

Steps 4, 5, and 6 are the same as before.

HO RS MSUB Linear Prorramning Subroutine from SHARE Library.



APPENDIX D
A STEEP DESCENT PROCEDURE FOR MINIMIZATION PROBLEMS

A steepest descent procedure due to A. V. Balakrishnan {1, which
guarantees convergence of the procedure to a solution of the minimization
of a quadratic performance index subject to a set of constraining linear
difierential equations and saticsfying the conditions of fixed initial
time and position, fixed final time and free final end-point, was adapted )
to the formuletion of the minimum problem with fixed wind for MV2 in the
seventh and tenth monthly progress reports. This procedure has the
advantage not only of guaranteed convergence, but also of convergence
o the‘unique solution having the least control effort, i.e., to the
solution for which t

nl -
\/ [Jull(t) &t is a minimum.

.
+
v

o
. For the sake of completeness we present this procedure here. It is

desired to minimize the functional,

t
"l 2. 2
3= CHx(e) 1S+ x [fu(e) [[7] at (p.1)
to ’
where n
A wal
Hx() 115 =) x2()
i=1

A\
a@) 117 =) wfe)
J=1
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's are related by the linear differential equations,

»

]
and the xi s and uJ

ax, <& L
i T/ '
o) e M x@ ) bl ule), 1Lz e
= P} (D.2)
(D.3)

satisfying the initial conditionms,

and subject to the constraints,
(D.&)

fHumn’f‘at’sng

t
o

We shall employ the following notation. A(t) will denote the squafe

ratrix
all(t) . . aln(t)

(t)

anl(t) SRR

B(t) will denote the rectangular matrix

bnl(t) .. bnm(t)

< X, y > will be used to denote the integreal,
t1 n-

noo™

J L xi(t) yi(t) at .

t.  i=1

o
X(t) is the fundamental matrix solution of



which eatisfies

o

x(to) =1I= 1

o
-

0 0. .. 1
»* *. ¥*
g(t) is the vector B (t) X T(t) X (t,) X(t)) ¢

*
where the = denotes the transpose, C is the initial condition vector, and

‘1

* *-1 * r -1
Ru{t) =B (t) X “(t) X (tl) u(t)\/ X(tl) X *(e) B(s) u(s) ds .
' t
o
Superscripts on vectors or scalars ac ui(t), will denote the number of
the iteration.

The procedure is as follows. Guess at u(t) = ul(t), t, St <ty

Then choose

(1) = ui(t) - & 2 t) ,

where
1 .1
ot E2__ 2 (t) = RuP(t) + glt) .
< (R +KkI)Z°, 20>
:1
If J 1152(t) |12 at <
t
o]
then let u2(t) = 3°(t). Likewise, choose
- 1
sl 4 Ay
where
1 1
Ao o <z,Z > , 2t - ru v,

< (r + x1)Z}, 2t >

Ly -
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and choose tl

-
ey = ate) ar J I (e) |12 at <M .

t
0

Stop the process at the Jth stage if

2

f (e - ui(e) ]2 at

t
0

is less than some preassigned quantity.
Suppose that at the rth stage we have

2!

|15 ]] 2 =f 1155 |12 at > 2 .

t
(o]

Then find a positive number kr such that

t
!
J TR [P e =t
t
o]
where ur+l’kr(t) =u'(t) - € 27,
r_ <75, 8 >
€ = r T
< (Re(x JD)Z5, 27 >
r 2
z = (R+(kr)1)u + g

Choose ur+l(t) = ur+l’kr(t) .

No conclusive results were obtained on the speed of the convergence
of this technique. However, it is believed that it would be a worthwhile
task to attempt to adapt this technique to solving the minimax problem.
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APPENDIX E

MINIMUM DRIFT AND MINIMUM LOAD CONTROL FOR MODEL VEHICLE NO. 2

E.1 Introduction

For large space vehicles where reduction in structure weight is of
prime consideration it is difficult to provide aerodynamically stable air

frames. In order to minimize weight and achieve effective stabilization

in all phases of powered flight, wifhin and without the atmosphere, modern. . . .

day boosterg are provided with swiveling engines. The control of the
booster is accomplished by sultably adjusting the gimbal angle for satis-
factory operation during the entire flight.

The design of control systems for present day vehicles is based on
rigid body approximation. In practice this assumption is reasonably good,
since it is possible to suppress the effect of bending and slosh in pre-
sent day vehicles.

In designing a controller for the rigid vehicle there are two ﬁajor
points to be kept in mind.

(1) Contrql’deflection angle has a hard'constraint.
(11) Aerodynamic pressures may break the vehicle.

Thus it is required to design a controller, such that under expected
disturbances it is possible to steer the vehicle with the available thrust
and control deflection angle, and bring it reasonably close to the desired
trajectory at the end of the flight time, maintaining the aerodynamic

loading within the st;uctura; limits.

There are two control schemes in use which come close to meeting the
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above requirements, namely, (i) Minimum Drift Control (MDC), (ii) Minimum

Load Control (MLC). Here we shall study the behavior of MVz under these schemes,

E.2 Rigid Body Dymanics of MV

The nominal (reference) trajectory for MV2 is a gravity turn trajectory.
t is the concern of guidance to give & command (normally pre-programmed)

+o tollow the trajectory (in the absence of un-accounted-for disturbances).
The control problem is to steer the vehicle close to this trajectory in
the presence of disturbances by perturting the command signal. Since
we are interested in the control problem, it suffices to study the notion
of the vehicle with reference to a gravity turn trajectory.

For small perturbations from the nominal, the rigid body equations
can be written independently in three planes. Assuning a nominal gravity
Lurn trajectory, the perturbation equations in the Yaw and pitch planes
~re identical. In either of these planes, the dynamics of the rigid vehicle

:c described by the following equations:

2+ C a4+ CP =0 : - (E0)
Z = Cso + 03a + Cp (E.2)
a=0 - CoZ+ay ' (E.3)

The variable involved in Equations (E.1), (E.z2), and (E.3) are defined in

Appendix BE.

E.3 Minimum Load Controcl

MV2 has its center of pressure ahead of its center of gravity and
hence is inherently unstable. The vehicle can be artificially stabilized
ty Teecling vack a linear combination of attitude angle, its derivative and
ansle of attack. Let

B=a®+taot b A _ ' (E.4)



ané let us analyze the feedback system.
Substituting (E.4) in (E.1) and (E.2) we get
.o C . N - .R
¢ +aCo+aCyo+ (Cl + JOC2)a 0 (E.5)

.
r

= (¢

o
.+ aC )o+ alcC + + 3 C )u .
5+ 80 )0+ a G v (G5 4 BT (E-6)
The characteristic equation of the feedback system, assumed time-invari-

v

£, is given by

CE =50+ [C-(5; + b 2y) + a,C 06"

S

) o0
+ [alc.i(czc5 - clch) + (ao + bo)c2 + C.Js (E.7) .

X r - ~ - c T V] = o
+ Cala (C,C, - C\C)) ColCy + 1 00 = ¢

By properly choosing the values of a s ay end bo it may be possitle
to locate the roots of the CE such that in quasi-stcady state the derivatives -

of attitude angle and drift-rate become negligible. Assuming that this

3

can Le dcne, Equations (E.L4), (E.%) and (E.) reduce to (£.8), (E.9) and

(£.10) respectively.

5 = b U E.S
B=a9+dU . (E.%)
» = .
a o + (c) + b Cp)a = 0 (E.9)
- (CD + aOCu)w + (c5 + °ocu)a =0 (E.10)

In (£.%), (E.9) and (E.10):

p=p

quasi ss

¢ =0 .
quasi ss

0 C.
quasi sS

CAalart m,r oy . B and
Solving foT o i gt Pouag: se MY U aci ss from Equations (E.3), E.8),

- (£.9) and (E.10) we get:
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(c; + Cb.) (CTZ - o)

®quasi ss © T, # C, (a, * b_) (E.11)
a C, (a, - Ch2) | |

aquasi ss co f Caw(a ‘Zzb ) (E.12)
1 2o (o)

Pauasi ss e T (E.13)

Tquasi ss Cl + Ca(ao +b )

Now i° e = 0, then

a . = 0y B ) = C
quasi ss quasi ss

but the bending momeni for Model Vehicle 2 at a point 90 meters {rom
the tottom end is given by
B.M. = (1.8450 + 12.36B) x 10° (E.1%)
Thus il ‘the attitude feedback is zero, then in the quasi-steady state,

the btending moment or the aerodynamic loading goes to zero. Hence

B = alé +bQ (E.15)

is called minimum load control (MLC).

It should be emphasized here that the above conclusions are based on
rigid~body assumption and are essentially true in the steady state when
all the closed-loop poles are in the left half plane. It hés been observed
[L] that with MLC, even in guasi-steady state,the peak value of the control
Geflection angle 8 and the angle of attack ¢ are smaller as compared to
thei} values in other modgs of control. This implies that the bending
noment, which is a function of f§ and @, would also be small. Later in fhis :
appendix some coamputational results for MV2 (rigid body approximation)'A
with MLC and MDC are given. Here it is found that the peak value of Q
with MLC is half of the peak value with MDC. Ho&ever the peaXk values
of B and the bending moment with MLC are 97.47 and 80.5% fespectively

of the peak values with MDC.



Hext we consider the influence of a; and b6 on the system behavior.-

E.L Effect of a; and b on System Response

(1) Letb =0, vary 2

l—-

For MLC with bO = 0, the characteristic equation of the system

57 - (S.C 5 - S
( 5 + alce)u + (a C, C5 7 alClChC7 + C_)S o
- o~ = N (E' lb)
Cl\. i}V'! )
This can be rewritten as:
C.
c ., = _ o
. a o+ CL (CLCj Clcl-v‘) (o)
14 % . . - =0 (E.17)
(PN ) < -
2 (37 + CBCTS +Ci8 - C) rc,{)
For W2 (at t = 82 sec.) this reduces to
a, S (8 + 0.01k42)
v E - =0 (E.18)

(s3 + .010738" - .0791L S + .00318)

o]
-

e (S + 0.01L443)
1+ =55« 18- 0.2555) (5 - 0.06iks) (8 + o300y = © (E.19)

llow a root locus can be plotted with-al as parameter. The roots of the
denominator in (E.19) are the open loop poles of the'system. The root
locus is given in Figure E.l.

From the root locus in Figure E.1 it is clear that with attitude
rate feedback alone it is possible to stabilize the system. In case of
MVZ for a. = 15 or larger, all the closed loop poles lie in the left half
wlanc.  However it is>not feagible to do this in practice because of
the zero at the oripgin. With the zero at the origin, the the %ow fre-

quency response to ratc commands is very poor, which means the system
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would not respond well to guidance maneuvers.

(2) Vvary b, fix a

1~

To consider the case with ay fixed and bo varying, let us

rewrite the characteristic equation (E.T) as follows:

2
¢, Cc.8° +cC.8-cC.C.C
L st LT 2” T 25T
(o]
2 2 «
(s +(c3c7 + alce)s + [alc7 (02c3 - clch) + Cl]a - clcsc7}
=0 . (E.20)
With a, fixed at 2.5, Equation (E.20) reduces to
b (8 +21.45) (S - 0.0k)
1 4 e , - (E.21)
- ChCY (S + 1.186) (s - 0.0276 + j 0.04336)
The root locus corresponding to Equation (E.21) for increasing b is given

in Figure E.2.

Figure E.2

Root Locus for a = 0, &, = 2.5, bo Increasing
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Proceeding slong the same lines as ebove, a root locus can be plotted'
for simultaneous variation of alvand bo’ when they are related by a con-
stant. The root locus corresponding to the case when 8 = K bo, and bo

increasing is sketched in Figure (E.3)

Figure E. >

Root Locus for 8, = 0, 8 = 0, bo Increasing

It can be seen from Figures (E.2) and (E.3) that for smell values of
bo, the root representing the lateral motion of the center of gravity of
the vehicle is stable and may become unstable if bo is large enoughi From
the characteristic equation (E.7) it can be seen that if the constant term
is positive, the root corresponding to the lateral motion of the vehicle
{s steble and if it is negative then the root is unstable. Thus

C

if bO = = E;’ the path root is at the origin, and this corresponds
5 _
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ate e

to the case of MDC, since under this condition the lateral drift is minimum,v s

c : :
If b° < - Ei the path root is stable and the vehicle drifts with the wind.
2 C . .
Whereas for bo > - EL’ the vehicle turns its nose into the wind to such
2

a degree that a positive accelaration against the wind takes place and
the path root is unstable. From the sbove discussion it appears that by
a proper choice of bo’ MLC and MDC can be employed simultaneously. But,
as will be shown shortly, this is not feasible.

We digress here to determine the rigid body natural frequency and
the damping of rotatory motion.

Substituting for @ and B in Equation (E.1), from Equation (E.3) and

(E.15), it follows that
‘:0 - . . - * -
+Cy (¢ C.Z + o)+ c (e, + by (o C.2 + aw)] 0

or

o + alczo + (cl + boc2)¢ = (clc72 + boC2C7Z - szw - bocéaw)

Neglect Z and consider the homogeneous equation

¢ +8,Co+ (cl + boC2)0 =0 (E.22)

From Equation (E.22) by inspection
“h"'W/Cl +b_C, (E.23)

a ¢

2 v Cl + 'bOC2

Equations (E.23) and (E.24) give approximate expressions for the natural

frequency and the damping of rotatory motion of the rigid vehicle. The

jamped natural frequency is given by



- E.10 -

F7 o Wy Twy V1o .
x . o NN
f?"' v —‘\JQE& + boCQ) 1-3

Now returning to the discussion of simultaneous MLC and MDC we

(E.25)

{;i note that the rigid body w goes to zero. This is undesirable because

small bandwidth leads to sluggish'response.

ey -
. !

E.5 Camputational Results

-~

For ¢ = 0.7 and fn = 0.2 c¢ps, MV2 response under MLC in the presence

of disturbance aw supplied by IMSFC (sec Figure 5.12a) is evaluated and
' presented in Figure E.L. For computational check and comparative study,

cimilar results under MDC are also generated (Figure E.5).

(1) Minimum Drift Control

> n
bs T e = (), cns
n 2n < cp
§=0.7

(Results for the above values of fn and ¢ have been provided by !SFC.)

——————
'

The corresponding values of control cdefficients are:

a_ = 2.469; bo = 0.8876, a

. = 5.9k5. The drift at the end of 23 sec. is

1

EANRed ~y 3 17 b\ 3 3

2.7 m/sec. The peak value of the B.M. is C.017 x 10 Kkga (maximum allow-
s 6 , U

able value is 2.24 x 10 kem) and the maximwn value of attitude angle

. 0 . . - .

is L.8". The results, except tor the drift rate, compare fairly well with

those provided ty MSFC. According to MSFC results the drift rate Z varies

between + 0.5 m/sec., with a final value of -0.5 m/sec. Whereas according

1o the results, presented here, the drift rate does not change sign and

;, has a final value of 3.7 m/sec. The difference may be due to any possible

s

variations in the values of the coeffieients Cl through C7 (see Appendix B).

P

rw... -
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(2) !inimum Load Control

As stated above, the system response to this control nmode is
found for ¢ = 0.7 and fn = 0.2 cps. The corresponding values of 8y and
b _ are:

o

8, = 3.94, bo = 3.68

Unlike the case of MDC, the drift in the case of MIC is 47 meters/sec.

‘However the peak value of the bending moment is 0.4931 x lO6 kgm as

compared to 0.613 x lOb in the other case. Because of a pole in the right
half plane, the attitude aﬁgle is much larger -—-12.50. The attitude rate.
in the quasi-steady state (no shear or ‘gustsin aw) {s fairly small, as
assumed in the derivation of MLC.

In general MLC does {gsult in small bending moments,provided the
disturbance is constant or varying slowly with time and altitude. In
case of high shears there is a tendency for the bending moment.under MLC
to take higher values as compared to other modes. From Figures E.% and i

E.5 we see that the bending moment at 68.5 seconds is 0.33 x lOb kgm
and 0.21 x lO6 kgm under MLC and MDC respectively. That is the bending
moment is larger under MLC. Thus if there are high frequency changes in
the wind in the high aerodynamic pressure region, then MLC mode is not
appropriate.

It appears that éuidance induced maneuvers are essential if MLC is
used. These maneuvers would correct for excessive departures from the
nominal trajectory incurred while using MLC.

Thus far we have studied MLC for a rigid body. We next consider the
effect of “tail-wags-dog," "slosh" and "bending." It should be emphasized
that the advantages and disadvantages of MIC as discussed so far are

strictly with respect to a rigid vehicle.with no taill-wags-dog or slosh.
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E.€ ~Effect of Tail-Vags-Dog

In rigid body approximation, we assumed the control force normal to
the wvehicle axis to.be g x (control thrust). But if the inertial reaction
force (due to B) is considered, it can be shown that the normal control
Tforce experiences an antiresonance. This antiresénance is calied the
"tail-wags-dog" phenomenon. Taking inertial reaction force into account,

Equation (E.1) changes to

o+ Clot + Cp + Co i}I:—(} + e S?(QCG -xa). (E.26)
For MV2
8g
C; y = 0-000097
and
I * Sg o - %) = 0.000192

I

Substituting the numerical values in the coefficients of (E.26)

"07 - 0.0791c + (.Lu8 + .000097)B + (0.000192)'6 =0

or

W - 0.079L @ + 0.000192 (B + 2340} = 0
Thus the frequency of antiresonance is ?

w =V2340 = 48.L rad./sec.
or f= 7.6 cps.
Since the antiresonance frequency is fairly high compared to the desirable
control freqﬁenc&, this ph;nomenon is of negligible consequence under MLC.

In terms of root locus plot, tail-wags-dog phenomenon introduces a

pair ¢f zeros - on- vhe imaginary axis, at +j L8.h.



E.7 Effect of Propellant Sloshing

In large boosters using liquid propellants, sloshing or splashing of

propellants against the walls 9f the booster is a problem of serious con-
cern. The sloshing phenomenon is analyzed by a mass-sprigg analogy. The
'effecp of sloshing is to introduce a dipole of the form ° * w?;

o
where wy is the frequency of osciilation of the sloghing mode at ith station.
l: If damping is taken into account, the dipoles become complex in nature. The
(. . sloshing poles are non-dominant because of their clo;e proximity to sloshing

b zeros.

E.8 ZEffect of Bending

Similar to the effect of slosh, bending introduces dipoles in the plant
transfer function. For MV2, the first bending frequency is close to the slosh
P frequency.

Bending creates the most critical problems associated with closed-loop
!;; stability. The attitude gyros sense the vehicle bending modes in addition
{-‘ to rigid body attitude changes. The change in B is due to the bending modes
and to true change in the attitude angle of the rigid body; this in turn

i may excite the bending modes further and an eventual instability may result.

E.9 Discussion and Conclusion

The results obtained for rigid body approximation to MV2 under MLC are
impressive. The peak value of the bending moment is well within the given

constraints. Tail-wags-dog may be entirely neglected from the problem of

analysis and design for the rigid body. However low slosh and first bending

frequencies are a matter of .concern.. .

o
L

A rule of thumb is to have the control frequency about 1/4 of the

- - . B T
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first bending mode frequency. However ;n the case of MV2 with a control
frequency of 0.2 cps,.the ratio between the control frequency and the first
bending frequency (0. 36 cps) is 1:1.8. Hence for successful operation of
the flexible vehicle. a good filter needs to be designed, so that only the
true attitude rate and angle of attack may be fed back.

From the results in Figures E.4 and E.5 the following éonclusion:
can be made: With either mode of control, MLC or MDC, the peak value of
the bending moment is well below the design limit 2.24 kgm. A reduction
of 20% in the peak value of the bending moment under MLC does not seem
to be of much value when one considers the large drift and attitude devia-
tion from the nominal trajectory that results under MLC. If MIC is
used, guidance induced maneuvers are essential to account for excessive de-

parture from the nominal trajectory.
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